Deploying Installer Provisioned
Infrastructure (IPI) of OpenShift on
Bare Metal - 4.7

Deployment Integration Team

1. Overview
2. Prerequisites
2.1. Node requirements
2.2. Firmware requirements for installing with virtual media
2.3. Network requirements
2.4. Configuring nodes
2.5. Out-of-band management
2.6. Required data for installation
2.7. Validation checklist for nodes
3. Setting up the environment for an OpenShift installation
3.1. Installing RHEL on the provisioner node
3.2. Preparing the provisioner node for OpenShift Container Platform installation
3.3. Retrieving the OpenShift Container Platform installer (GA Release)
3.4. Extracting the OpenShift Container Platform installer (GA Release)
3.5. Creating an RHCOS images cache (optional)
3.6. Configuration files
3.6.1. Configuring the install-config.yaml file
3.6.2. Setting proxy settings within the install-config.yaml file (optional)
3.6.3. Modifying the install-config.yaml file for no provisioning network (optional)
3.6.4. Modifying the install-config.yaml file for dual-stack network (optional)
3.6.5. Additional install-config parameters
3.6.6. BMC addressing
BMC addressing for Dell iDRAC
BMC addressing for HPE iL.O
BMC addressing for KVM with sushy-tools Redfish emulator
3.6.7. Root device hints
3.6.8. Creating the OpenShift Container Platform manifests
3.7. Creating a disconnected registry (optional)
3.7.1. Preparing the registry node to host the mirrored registry (optional)
3.7.2. Generating the self-signed certificate (optional)
3.7.3. Creating the registry podman container (optional)
3.7.4. Copy and update the pull-secret (optional)
3.7.5. Mirroring the repository (optional)
3.7.6. Modify the install-config.yaml file to use the disconnected registry (optional)
3.8. Deploying routers on worker nodes
3.9. Validation checklist for installation
3.10. Deploying the cluster via the OpenShift Container Platform installer
3.11. Following the installation
3.12. Verifying static IP address configuration
4. Day 2 operations

4.1. Accessing the web console

© O Ul N

11
11
11
13
13
13
16
16
17
19
19
22
22
22
23
27
29
31
33
36
37
37
38
38
39
40
40
41
42
43
43
43
43
45
45

4.2. Backing up the cluster configuration
4.3. Expanding the cluster
4.3.1. Preparing the bare metal node
4.3.2. Preparing to deploy with Virtual Media on the baremetal network
Diagnosing a duplicate MAC address when provisioning a new host in the cluster
4.3.3. Provisioning the bare metal node
4.3.4. Preparing the provisioner node to be deployed as a worker node
4.3.5. Adding a worker node to an existing cluster
Appending DNS records
Configuring Bind (Option 1)
Configuring dnsmasq (Option 2)
Appending DHCP reservations
Configuring dhcpd (Option 1)
Configuring dnsmasq (Option 2)
Deploying the provisioner node as a worker node using Metal3
5. Appendix
5.1. Troubleshooting
5.2. Creating DNS Records
5.2.1. Configuring Bind (Option 1)
5.2.2. Configuring dnsmasq (Option 2)
5.3. Creating DHCP reservations
5.3.1. Configuring dhcpd (Option 1)
5.3.2. Configuring dnsmasq (Option 2)

45
46
46
48
50
51
54
54
57
57
58
58
58
58
59
62
62
62
62
63
64
64
65

@ Download the PDF version of this document or visit https://openshift-kni.github.io/
- baremetal-deploy/

Deployment.pdf
https://openshift-kni.github.io/baremetal-deploy/
https://openshift-kni.github.io/baremetal-deploy/

Chapter 1. Overview

Installer-provisioned installation provides support for installing OpenShift Container Platform on
bare metal nodes. This guide provides a methodology to achieving a successful installation.

During installer-provisioned installation on bare metal, the installer on the bare metal node labeled
as provisioner creates a bootstrap virtual machine (VM). The role of the bootstrap VM is to assist in
the process of deploying an OpenShift Container Platform cluster. The bootstrap VM connects to the
baremetal network and to the provisioning network, if present, via the network bridges.

Internet access

API VIP Ingress VIP Router DHCP server DNS server
Baremetal network
Y i |
Out-of-Band Management Router

network (optional)

Provisioning node

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
eno2 Baremetal bridge Y
1 1
A\ A 4

Bootstrap VM

enol Provisioning bridge

Provisioning network (optional)

When the installation of OpenShift control plane nodes is complete and fully operational, the
installer destroys the bootstrap VM automatically and moves the virtual IP addresses (VIPs) to the
appropriate nodes. The API VIP moves to the control plane nodes and the Ingress VIP moves to the
worker nodes.

Internet access

APIVIP Ingress VIP Router DHCP server ~ DNS server
Baremetal network
b N I
S i [

i i

i Out-of-Band Management i Router
! network (optional) i

! 1

: |

v 4 |

Provisioning node Control plane nodes x3 Worker nodes xN

eno2 Baremetal bridge

enol Provisioning bridge

Provisioning network (optional)

Chapter 2. Prerequisites

Installer-provisioned installation of OpenShift Container Platform requires:

1. One provisioner node with Red Hat Enterprise Linux (RHEL) 8.x installed.
2. Three control plane nodes.
3. Baseboard Management Controller (BMC) access to each node.
4. Atleast one network:
a. One required routable network
b. One optional network for provisioning nodes; and,
c. One optional management network.

Before starting an installer-provisioned installation of OpenShift Container Platform, ensure the
hardware environment meets the following requirements.

2.1. Node requirements

Installer-provisioned installation involves a number of hardware node requirements:

e CPU architecture: All nodes must use x86_64 CPU architecture.

* Similar nodes: Red Hat recommends nodes have an identical configuration per role. That is,
Red Hat recommends nodes be the same brand and model with the same CPU, memory and
storage configuration.

* Baseboard Management Controller: The provisioner node must be able to access the
baseboard management controller (BMC) of each OpenShift Container Platform cluster node.
You may use IPMI, Redfish, or a proprietary protocol.

* Latest generation: Nodes must be of the most recent generation. Installer-provisioned
installation relies on BMC protocols, which must be compatible across nodes. Additionally,
RHEL 8 ships with the most recent drivers for RAID controllers. Ensure that the nodes are
recent enough to support RHEL 8 for the provisioner node and RHCOS 8 for the control plane
and worker nodes.

* Registry node: (Optional) If setting up a disconnected mirrored registry, it is recommended the
registry reside in its own node.

* Provisioner node: Installer-provisioned installation requires one provisioner node.
* Control plane: Installer-provisioned installation requires three control plane nodes for high
availability.

* Worker nodes: While not required, a typical production cluster has one or more worker nodes.
Smaller clusters are more resource efficient for administrators and developers during
development, production, and testing.

* Network interfaces: Each node must have at least one 10GB network interface for the routable
baremetal network. Each node must have one 10GB network interface for a provisioning
network when using the provisioning network for deployment. Using the provisioning

network is the default configuration. Network interface names must follow the same naming
convention across all nodes. For example, the first NIC name on a node, such as eth@ or eno1,
must be the same name on all of the other nodes. The same principle applies to the remaining
NICs on each node.

Unified Extensible Firmware Interface (UEFI): Installer-provisioned installation requires
UEFI boot on all OpenShift Container Platform nodes when using IPv6 addressing on the
provisioning network. In addition, UEFI Device PXE Settings must be set to use the IPv6 protocol
on the provisioning network NIC, but omitting the provisioning network removes this
requirement.

Secure Boot: Many production scenarios require nodes with Secure Boot enabled to verify the
node only boots with trusted software, such as UEFI firmware drivers, EFI applications and the
operating system. To deploy a OpenShift Container Platform cluster with Secure Boot, you must
enable UEFI boot mode and Secure Boot on each control plane node and each worker node. Red
Hat supports Secure Boot only when installer-provisioned installation uses Red Fish Virtual
Media. Red Hat does not support Secure Boot with self-generated keys.

2.2. Firmware requirements for installing with virtual

m

edia

The installer for installer-provisioned OpenShift Container Platform clusters validates the

har
sup

dware and firmware compatibility with Redfish virtual media. The following table lists
ported firmware for installer-provisioned OpenShift Container Platform clusters deployed with

Redfish virtual media.

Table 1. Firmware compatibility for Redfish virtual media
Hardware Model Management Firmware Versions
HP 10th Generation iLO5 N/A
9th Generation iLO4 N/A
Dell 14th Generation iDRAC9 v4.20.20.20 - 04.40.00.00
13th Generation iDRAC 8 v2.75.75.75+
Refer to the hardware documentation for the nodes or contact the hardware
vendor for information on updating the firmware.
There are no known firmware limitations for HP servers.
o For Dell servers, ensure the OpenShift Container Platform cluster nodes have
AutoAttach Enabled through the iDRAC console. The menu path is: Configuration
- Virtual Media —~ Attach Mode — AutoAttach . With iDRAC 9 firmware version
04.40.00.00, the Virtual Console plug-in defaults to eHTML5, which causes problems
with the InsertVirtualMedia workflow. Set the plug-in to HTML5 to avoid this issue.
The menu path is: Configuration — Virtual console — Plug-in Type -~ HTMLS .
o The installer will not initiate installation on a node if the node firmware is below

the foregoing versions when installing with virtual media.

2.3. Network requirements

Installer-provisioned installation of OpenShift Container Platform involves several network
requirements by default. First, installer-provisioned installation involves a non-routable
provisioning network for provisioning the operating system on each bare metal node and a
routable baremetal network. Since installer-provisioned installation deploys ironic-dnsmasq, the
networks should have no other DHCP servers running on the same broadcast domain. Network
administrators must reserve IP addresses for each node in the OpenShift Container Platform
cluster.

Network Time Protocol (NTP)

Each OpenShift Container Platform node in the cluster must have access to an NTP server.
OpenShift Container Platform nodes use NTP to synchronize their clocks. For example, cluster
nodes use SSL certificates that require validation, which might fail if the date and time between the
nodes are not in sync.

o Define a consistent clock date and time format in each cluster node’s BIOS settings,
or installation might fail.

Configuring NICs

OpenShift Container Platform deploys with two networks:

* provisioning: The provisioning network is an optional non-routable network used for
provisioning the underlying operating system on each node that is a part of the OpenShift
Container Platform cluster. The network interface for the provisioning network on each cluster
node must have the BIOS or UEFI configured to PXE boot. In OpenShift Container Platform 4.3,
when deploying using the provisioning network, the first NIC on each node, such as eth@ or eno1,
must interface with the provisioning network. In OpenShift Container Platform 4.4 and later
releases, you can specify the provisioning network NIC with the provisioningNetworkInterface
configuration setting.

* baremetal: The baremetal network is a routable network. In OpenShift Container Platform 4.3,
when deploying using the provisioning network, the second NIC on each node, such as eth1 or
eno2, must interface with the baremetal network. In OpenShift Container Platform 4.4 and later
releases, you can use any NIC order to interface with the baremetal network, provided it is the
same NIC order across worker and control plane nodes and not the NIC specified in the
provisioningNetworkInterface configuration setting for the provisioning network.

Use a compatible approach such that cluster nodes use the same NIC ordering on
o all cluster nodes. NICs must have heterogeneous hardware with the same NIC
naming convention such as eth@ or enoT.

o When using a VLAN, each NIC must be on a separate VLAN corresponding to the
appropriate network.

Configuring the DNS server

Clients access the OpenShift Container Platform cluster nodes over the baremetal network. A
network administrator must configure a subdomain or subzone where the canonical name
extension is the cluster name.

<cluster-name>.<domain-name>
For example:
test-cluster.example.com

For assistance in configuring the DNS server, check Appendix section for:

* Creating DNS Records with Bind (Option 1)

* Creating DNS Records with dnsmasq (Option 2)

Reserving IP addresses for nodes with the DHCP server
For the baremetal network, a network administrator must reserve a number of IP addresses,
including:

1. Two virtual IP addresses.

o One IP address for the API endpoint

> One IP address for the wildcard ingress endpoint
2. One IP address for the provisioner node.
3. One IP address for each control plane (master) node.

4. One IP address for each worker node, if applicable.

Reserving IP addresses so they become static IP addresses

Some administrators prefer to use static IP addresses so that each node’s IP
address remains constant in the absence of a DHCP server. To use static IP

o addresses in the OpenShift Container Platform cluster, reserve the IP addresses
with an infinite lease. During deployment, the installer will reconfigure the NICs
from DHCP assigned addresses to static IP addresses. NICs with DHCP leases that
are not infinite will remain configured to use DHCP.

The following table provides an exemplary embodiment of fully qualified domain names. The API
and Nameserver addresses begin with canonical name extensions. The host names of the control
plane and worker nodes are exemplary, so you can use any host naming convention you prefer.

Usage Host Name IP
API api.<cluster-name>.<domain> <ip>
Ingress LB (apps) *apps.<cluster-name>.<domain> <ip>

Usage Host Name IP

Provisioner node provisioner.<cluster-name>.<domain> <ip>
Master-0 openshift-master-0.<cluster-name>.<domain> <ip>
Master-1 openshift-master-1.<cluster-name>-.<domain> <ip>
Master-2 openshift-master-2.<cluster-name>.<domain> <ip>
Worker-0 openshift-worker-0.<cluster-name>.<domain> <ip>
Worker-1 openshift-worker-1.<cluster-name>.<domain> <ip>
Worker-n openshift-worker-n.<cluster-name>.<domain> <ip>

For assistance in configuring the DHCP server, check Appendix section for:

» Creating DHCP reservations with dhcpd (Option 1)

* Creating DHCP reservations with dnsmasq (Option 2)

State-driven network configuration requirements (Technology Preview)

OpenShift Container Platform supports additional post-installation state-driven network
configuration on the secondary network interfaces of cluster nodes using kubernetes-nmstate. For
example, system administrators might configure a secondary network interface on cluster nodes
after installation for a storage network.

o Configuration must occur before scheduling pods.

State-driven network configuration requires installing kubernetes-nmstate, and also requires
Network Manager running on the cluster nodes. See OpenShift Virtualization > Kubernetes
NMState (Tech Preview) for additional details.

IPv6 considerations

SLAAC Addressing

If you do not plan to use SLAAC " addresses on your OpenShift Container Platform node, then it
should be disabled for baremetal networks, that means that if your network equipment is
configured to send SLAAC addresses when replying to Route Advertisements that behavior should
be changed, so it only sends the route and not the SLAAC address.

Install ndptool on your system in order to check what your RAs look like:

Turn down/up baremetal iface on a master Node

$ sudo nmcli con down "Wired connection 5" && sudo nmcli con up "Wired connection 5"
Connection 'Wired connection 5' successfully deactivated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/1983)

Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/2044)

ndptool monitor on Helper node
$ sudo ndptool monitor -t ra

NDP payload len 80, from addr: fe80::c0@a4:6464:bcb3:d657, iface: baremetal.153

Type: RA

Hop limit: 64

Managed address configuration: yes

Other configuration: no

Default router preference: medium

Router lifetime: @s

Reachable time: unspecified

Retransmit time: unspecified

Source linkaddr: 1c:40:24:1b:0c:34

Prefix: 2620:52:0:1303::/64, valid_time: 86400s, preferred_time: 14400s, on_link:
yes, autonomous_addr_conf: no, router_addr: no

Route: ::/0, lifetime: @s, preference: low

The ndptool monitor should report Managed address configuration: yes.

Network Ranges and Configurations

Different baremetal and provisioning networks are required for each environment; each
environment will have a different IPv6 range for each one of those networks.

In our configuration we used subinterfaces attached to two different physical interfaces, VLAN
tagging was done at O.S. level (this required switch ports configured with trunk mode).

Our different IPv6 networks were all routable but usually, the only routable networks are the
baremetal ones.

Keep in mind that provisioning networks cannot be in the same broadcast domain, since services
such as DHCP are running.

Route Advertisement
o Route Advertisement must be enabled for both networks baremetal and
provisioning.
Route Advertisements

As mentioned previously, both the baremetal and the provisioning networks must have Route
Advertisement enabled. For the baremetal network, the radvd daemon was used, while the
provisioning network has RA enabled in the Metal® dnsmasq, so no configuration is needed.

2.4. Configuring nodes

Configuring nodes when using the provisioning network

Each node in the cluster requires the following configuration for proper installation.
A A mismatch between nodes will cause an installation failure.

While the cluster nodes can contain more than two NICs, the installation process only focuses on
the first two NICs:

NIC Network VLAN
NIC1 provisioning <provisioning-vlan>

NIC2 baremetal <baremetal-vlan>

NIC1 is a non-routable network (provisioning) that is only used for the installation of the OpenShift
Container Platform cluster.

The Red Hat Enterprise Linux (RHEL) 8.x installation process on the provisioner node might vary.
To install Red Hat Enterprise Linux (RHEL) 8.x using a local Satellite server or a PXE server, PXE-
enable NIC2.

PXE Boot order
NIC1 PXE-enabled provisioning network 1

NIC2 baremetal network. PXE-enabled is 2

optional.

o Ensure PXE is disabled on all other NICs.
Configure the control plane and worker nodes as follows:

PXE Boot order

NIC1 PXE-enabled (provisioning network) 1

Configuring nodes without the provisioning network

The installation process requires one NIC:

NIC Network VLAN
NICx baremetal <baremetal-vlan>

NICx is a routable network (baremetal) that is used for the installation of the OpenShift Container
Platform cluster, and routable to the internet.

Configuring nodes for Secure Boot manually

Secure Boot prevents a node from booting unless it verifies the node is using only trusted software,
such as UEFI firmware drivers, EFI applications and the operating system.

o Red Hat only supports manually configured Secure Boot when deploying with
Redfish virtual media.

To enable Secure Boot manually, refer to the hardware guide for the node and execute the
following:

1. Boot the node and enter the BIOS menu.
2. Set the node’s boot mode to UEFI Enabled.

3. Enable Secure Boot.

10

o Red Hat does not support Secure Boot with self-generated keys.

2.5. Out-of-band management

Nodes will typically have an additional NIC used by the Baseboard Management Controllers (BMCs).
These BMCs must be accessible from the provisioner node.

Each node must be accessible via out-of-band management. When using an out-of-band
management network, the provisioner node requires access to the out-of-band management
network for a successful OpenShift Container Platform 4 installation.

The out-of-band management setup is out of scope for this document. We recommend setting up a
separate management network for out-of-band management. However, using the provisioning
network or the baremetal network are valid options.

2.6. Required data for installation

Prior to the installation of the OpenShift Container Platform cluster, gather the following
information from all cluster nodes:
* Out-of-band management IP
o Examples
= Dell GDRAC) IP
= HP (iLO) IP
When using the provisioning network
* NIC1 (provisioning) MAC address
e NIC2 (baremetal) MAC address

When omitting the provisioning network

¢ NICx (baremetal) MAC address

2.7. Validation checklist for nodes

When using the provisioning network

O DHCP reservations use infinite leases to deploy the cluster with static IP addresses. (optional)
NIC1 VLAN is configured for the provisioning network.

NIC2 VLAN is configured for the baremetal network.

NIC1 is PXE-enabled on the provisioner, Control Plane (master), and worker nodes.

PXE has been disabled on all other NICs.

Control plane and worker nodes are configured.

All nodes accessible via out-of-band management.

0O 0O 0O o o o o

A separate management network has been created. (optional)

11

O Required data for installation.

When omitting the provisioning network

DHCP reservations use infinite leases to deploy the cluster with static IP addresses. (optional)

NICx VLAN is configured for the baremetal network.

All nodes accessible via out-of-band management.

O

@)

O Control plane and worker nodes are configured.

O

O A separate management network has been created. (optional)
@)

Required data for installation.

Summary

After an environment has been prepared according to the documented prerequisites, the
installation process is the same as other installer-provisioned platforms.

[1] Stateless Address AutoConfiguration

12

Chapter 3. Setting up the environment for an
OpenShift installation

3.1. Installing RHEL on the provisioner node

With the networking configuration complete, the next step is to install RHEL 8.X on the provisioner
node. The installer uses the provisioner node as the orchestrator while installing the OpenShift
Container Platform cluster. For the purposes of this document, installing RHEL on the provisioner
node is out of scope. However, options include but are not limited to using a RHEL Satellite server,
PXE, or installation media.

3.2. Preparing the provisioner node for OpenShift
Container Platform installation

Perform the following steps to prepare the environment.

Procedure

1. Log in to the provisioner node via ssh.

2. Create a non-root user (kni) and provide that user with sudo privileges.

[root@provisioner ~]# useradd kni

[root@provisioner ~]# passwd kni

[root@provisioner ~]# echo "kni ALL=(root) NOPASSWD:ALL" | tee -a
/etc/sudoers.d/kni

[root@provisioner ~]# chmod 0440 /etc/sudoers.d/kni

3. Create an ssh key for the new user.

[root@provisioner ~]# su - kni -c¢ "ssh-keygen -t rsa -f /home/kni/.ssh/id_rsa -N

4. Login as the new user on the provisioner node.

[root@provisioner ~]# su - kni
[kni@provisioner ~]$

5. Use Red Hat Subscription Manager to register the provisioner node.

[kni@provisioner ~]$ sudo subscription-manager register --username=<user>
--password=<pass> --auto-attach
[kni@provisioner ~]$ sudo subscription-manager repos --enable=rhel-8-for-x86_64-

13

appstream-rpms --enable=rhel-8-for-x86_64-baseos-rpms

o For more information about Red Hat Subscription Manager, see Using and
Configuring Red Hat Subscription Manager.

6. Install the following packages.

[kni@provisioner ~]$ sudo dnf install -y libvirt qemu-kvm mkisofs python3-devel jq
ipmitool

7. Modify the user to add the libvirt group to the newly created user.
[kni@provisioner ~]$ sudo usermod --append --groups libvirt <user>
8. Restart firewalld and enable the http service.

[kni@provisioner ~]$ sudo systemctl start firewalld

[knieprovisioner ~]$ sudo firewall-cmd --zone=public --add-service=http --permanent
[kni@provisioner ~]$ sudo firewall-cmd --add-port=5000/tcp --zone=libvirt
--permanent

[kni@provisioner ~]$ sudo firewall-cmd --add-port=5000/tcp --zone=public
--permanent

[kni@provisioner ~]$ sudo firewall-cmd --reload

9. Start and enable the 1ibvirtd service.

[kni@provisioner ~]$ sudo systemctl start libvirtd
[kni@provisioner ~]$ sudo systemctl enable libvirtd --now

10. Create the default storage pool and start it.

[knieprovisioner ~]$ sudo virsh pool-define-as --name default --type dir --target
/var/lib/1libvirt/images

[kni@provisioner ~]$ sudo virsh pool-start default

[kni@provisioner ~]$ sudo virsh pool-autostart default

11. Configure networking.
0 This step can also be run from the web console.
Provisioning Network (IPv4 address)

[kni@provisioner ~]$ sudo nohup bash -c
nmcli con down "$PROV_CONN"

14

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/rhsm/index
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/rhsm/index

nmcli con delete "$PROV_CONN"

RHEL 8.1 appends the word "System" in front of the connection, delete in case
it exists

nmcli con down "System $PROV_CONN"

nmcli con delete "System $PROV_CONN"

nmcli connection add ifname provisioning type bridge con-name provisioning

nmcli con add type bridge-slave ifname "$PROV_CONN" master provisioning

nmcli connection modify provisioning ipv4.addresses 172.22.0.1/24 ipv4.method
manual

nmcli con down provisioning

nmcli con up provisioning"""

The ssh connection might disconnect after executing this step.

o The IPv4 address may be any address as long as it is not routable via the
baremetal network.

Provisioning Network (IPv6 address)
[kni@provisioner ~]$ sudo nohup bash -¢ """

nmcli con down "$PROV_CONN"

nmcli con delete "$PROV_CONN"

RHEL 8.1 appends the word "System" in front of the connection, delete in case
it exists

nmcli con down "System $PROV_CONN"

nmcli con delete "System $PROV_CONN"

nmcli connection add ifname provisioning type bridge con-name provisioning

nmcli con add type bridge-slave ifname "$PROV_CONN" master provisioning

nmcli connection modify provisioning ipv6.addresses fd00:1101::1/64 ipv6.method
manual

nmcli con down provisioning

nmcli con up provisioning"""

The ssh connection might disconnect after executing this step.

o The IPv6 address may be any address as long as it is not routable via the
baremetal network.

a Ensure that UEFI is enabled and UEFI PXE settings are set to the IPv6 protocol
when using IPv6 addressing.

12. ssh back into the provisioner node (if required).
ssh kni@provisioner.<cluster-name>.<domain>

13. Verify the connection bridges have been properly created.

15

[kni@provisioner ~]$ nmcli con show

NAME UuID

baremetal 4d5133a5-8351-4bb9-bfd4-3af264801530
provisioning 43942805-017f-4d7d-a2c2-7cb3324482ed
virbr@ d9bcad0f-eeel1-410b-8879-a2d4bb0465e7

bridge-slave-enol 76a8ed50-c7e5-4999-b4f6-6d9014dd0812
bridge-slave-eno2 f31¢3353-54b7-48de-8933-02d2b34c4736

14. Create a pull-secret.txt file.

[kni@provisioner ~]$ vim pull-secret.txt

TYPE
bridge
bridge
bridge
ethernet
ethernet

DEVICE
baremetal
provisioning
virbr@

enoT

eno?

In a web browser, navigate to Install on Bare Metal with user-provisioned infrastructure, and
scroll down to the Downloads section. Click Copy pull secret. Paste the contents into the pull-
secret. txt file and save the contents in the kni user’s home directory.

3.3. Retrieving the OpenShift Container Platform

installer (GA Release)

Use the latest-4.x version of the installer to deploy the latest generally available version of

OpenShift Container Platform:

[kni@provisioner ~]$ export VERSION=1atest-4.7

export RELEASE_IMAGE=$(curl -s https://mirror.openshift.com/pub/openshift-
v4/clients/ocp/$VERSION/release.txt | grep 'Pull From: quay.io' | awk -F ' ' "{print

$3}")

3.4. Extracting the OpenShift Container Platform

installer (GA Release)

After retrieving the installer, the next step is to extract it.

Procedure

1. Set the environment variables:

[kni@provisioner ~]$ export cmd=openshift-baremetal-install
[kni@provisioner ~]$ export pullsecret_file=~/pull-secret.txt

[kni@provisioner ~]$ export extract_dir=$(pwd)

2. Get the oc binary:

16

https://cloud.redhat.com/openshift/install/metal/user-provisioned

[kni@provisioner ~]$ curl -s https://mirror.openshift.com/pub/openshift-
v4/clients/ocp/$VERSION/openshift-client-linux.tar.gz | tar zxvf - oc

3. Extract the installer:

[kni@provisioner ~]$ sudo cp oc /usr/local/bin

[kni@provisioner ~]$ oc adm release extract --registry-config "${pullsecret_file}"
--command=$cmd --to "${extract_dir}" ${RELEASE IMAGE}

[kni@provisioner ~]$ sudo cp openshift-baremetal-install /usr/local/bin

3.5. Creating an RHCOS images cache (optional)

To employ image caching, you must download two images: the Red Hat Enterprise Linux CoreOS
(RHCOS) image used by the bootstrap VM and the RHCOS image used by the installer to provision
the different nodes. Image caching is optional, but especially useful when running the installer on a
network with limited bandwidth.

If you are running the installer on a network with limited bandwidth and the RHCOS images
download takes more than 15 to 20 minutes, the installer will timeout. Caching images on a web
server will help in such scenarios.

Use the following steps to install a container that contains the images.

1. Install podman.
$ sudo dnf install -y podman
2. Open firewall port 8080 to be used for RHCOS image caching.

$ sudo firewall-cmd --add-port=8080/tcp --zone=public --permanent
$ sudo firewall-cmd --reload

3. Create a directory to store the bootstraposimage and clusterosimage.
$ mkdir /home/kni/rhcos_image_cache
4. Set the appropriate SELinux context for the newly created directory.

$ sudo semanage fcontext -a -t httpd_sys_content_t
"/home/kni/rhcos_image_cache(/.*)?"
$ sudo restorecon -Rv rhcos_image_cache/

5. Get the commit ID from the installer. The ID determines which images the installer needs to

17

10.

11.

12.

18

download.

$ export COMMIT_ID=$(/usr/local/bin/openshift-baremetal-install version | grep
"Abuilt from commit' | awk '{print $4}')

Get the URI for the RHCOS image that the installer will deploy on the nodes.

$ export RHCOS_OPENSTACK_URI=$(curl -s -S

https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.

on | jq .images.openstack.path | sed 's/"//g")

Get the URI for the RHCOS image that the installer will deploy on the bootstrap VM.

$ export RHCOS_QEMU_URI=$(curl -s -S

https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.

on | jq .images.qemu.path | sed 's/"//g")

Get the path where the images are published.

$ export RHCOS_PATH=$(curl -s -S

https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.

on | jq .baseURI | sed 's/"//q")

Get the SHA hash for the RHCOS image that will be deployed on the bootstrap VM.

$ export RHCOS_QEMU_SHA_UNCOMPRESSED=$(curl -s -S

https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.

on | jq -r '.images.gemu["uncompressed-sha256"]")

Get the SHA hash for the RHCOS image that will be deployed on the nodes.

$ export RHCOS_OPENSTACK_SHA_COMPRESSED=$(curl -s -S

https://raw.githubusercontent.com/openshift/installer/$COMMIT_ID/data/data/rhcos.

on | jq -r '.images.openstack.sha256")

Download the images and place them in the /home/kni/rhcos_image_cache directory.

$ curl -L ${RHCOS_PATH}${RHCOS_QEMU_URI} -o /home/kni/rhcos_image_cache/
${RHCOS_QEMU_URI}

$ curl -L ${RHCOS_PATH}${RHCOS_OPENSTACK_URI} -o /home/kni/rhcos_image_cache/
${RHCOS_OPENSTACK_URI}

Confirm SELinux type is of httpd_sys_content_t for the newly created files.

js

js

js

js

js

$ 1s -Z /home/kni/rhcos_image_cache
13. Create the pod.

$ podman run -d --name rhcos_image_cache \

-v /home/kni/rhcos_image_cache:/var/www/html \
-p 8080:8080/tcp \
quay.io/centos7/httpd-24-centos7:1latest

14. Generate the bootstrap0SImage and cluster0SImage configuration.

$ export BAREMETAL_IP=$(ip addr show dev baremetal | awk '/inet /{print $2}' | cut
-d"/" -£1)

$ export RHCOS_OPENSTACK_SHA256=$(zcat /home/kni/rhcos_image_cache/
${RHCOS_OPENSTACK_URI} | sha256sum | awk '{print $1}')

$ export RHCOS_QEMU_SHA256=$%(zcat /home/kni/rhcos_image_cache/${RHCOS_QEMU_URI} |
sha256sum | awk '{print $1}")

$ export CLUSTER_OS_IMAGE="http://${BAREMETAL_IP}:8080/${RHCOS_OPENSTACK_URI
}?sha256=${RHCOS_OPENSTACK_SHA256}"

$ export BOOTSTRAP_OS_IMAGE="http://${BAREMETAL_IP}:8080/${RHCOS_QEMU_URI}
?sha256=${RHCOS_QEMU_SHA256}"

$ echo "${RHCOS_OPENSTACK_SHA256} ${RHCOS_OPENSTACK_URI}" >
/home/kni/rhcos_image_cache/rhcos-ootpa-latest.qcow2.md5sum

$ echo " bootstrap0SImage=${BOOTSTRAP_0S_IMAGE}"

$ echo " cluster0SImage=${CLUSTER_OS_IMAGE}"

15. Add the required configuration to the install-config.yaml file under platform.baremetal.

platform:
baremetal:
bootstrap0SImage: http://<BAREMETAL_IP>:8080/<RHCOS_QEMU_URI>?sha256
=<RHCOS_QEMU_SHA256>
cluster0SImage: http://<BAREMETAL_IP>:8080/<RHCOS_OPENSTACK_URI>?sha256
=<RHCOS_OPENSTACK_SHA256>

See the Configuring the install-config.yaml file section for additional details.

3.6. Configuration files

3.6.1. Configuring the install-config.yaml file

The install-config.yaml file requires some additional details. Most of the information is teaching
the installer and the resulting cluster enough about the available hardware so that it is able to fully
manage it.

19

1

20

Configure install-config.yaml. Change the appropriate variables to match the environment,

including pullSecret and sshKey.

apiVersion: v1
basedomain: <domain>
metadata:
name: <cluster-name>
networking:
machineCIDR: <public-cidr>
networkType: OVNKubernetes
compute:
- name: worker
replicas: 2 @
controlPlane:
name: master
replicas: 3
platform:
baremetal: {}
platform:
baremetal:
apiVIP: <api-ip>
ingressVIP: <wildcard-ip>
provisioningNetworkInterface: <NIC1>
provisioningNetworkCIDR: <CIDR>
hosts:
- name: openshift-master-0
role: master
bmc:
address: ipmi://<out-of-band-ip> @
username: <user>
password: <password>
bootMACAddress: <NIC1-mac-address>
hardwareProfile: default
- name: openshift-master-1
role: master
bmc:
address: ipmi://<out-of-band-ip>
username: <user>
password: <password>
bootMACAddress: <NIC1-mac-address>
hardwareProfile: default
- name: openshift-master-2
role: master
bmc:
address: ipmi://<out-of-band-ip>
username: <user>
password: <password>
bootMACAddress: <NIC1-mac-address>
hardwareProfile: default
- name: openshift-worker-0

role: worker
bmc:
address: ipmi://<out-of-band-ip>
username: <user>
password: <password>
bootMACAddress: <NIC1-mac-address>
hardwareProfile: unknown
- name: openshift-worker-1
role: worker
bmc:
address: ipmi://<out-of-band-ip>
username: <user>
password: <password>
bootMACAddress: <NIC1-mac-address>
hardwareProfile: unknown
pullSecret: '<pull_secret>'
sshKey: '<ssh_pub_key>'

@ Scale the worker machines based on the number of worker nodes that are part of the
OpenShift Container Platform cluster.

@ Refer to the BMC addressing for more options

2. Create a directory to store cluster configs.

[kni@provisioner ~]$ mkdir ~/clusterconfigs
[knieprovisioner ~]$ cp install-config.yaml ~/clusterconfigs

3. Ensure all bare metal nodes are powered off prior to installing the OpenShift Container
Platform cluster.

[kni@provisioner ~]$ ipmitool -I lanplus -U <user> -P <password> -H <management-
server-ip> power off

4. Remove old bootstrap resources if any are left over from a previous deployment attempt.

for i in $(sudo virsh 1list | tail -n +3 | grep bootstrap | awk {'print $2'});
do

sudo virsh destroy $i;

sudo virsh undefine $i;

sudo virsh vol-delete $i --pool $i;

sudo virsh vol-delete $i.ign --pool $i;

sudo virsh pool-destroy $1i;

sudo virsh pool-undefine $i;
done

21

3.6.2. Setting proxy settings within the install-config.yaml file (optional)

To deploy an OpenShift Container Platform cluster using a proxy, make the following changes to the
install-config.yaml file.

apiVersion: v1
baseDomain: <domain>
proxy:
httpProxy: http://USERNAME:PASSWORD@proxy.example.com:PORT
httpsProxy: https://USERNAME:PASSWORD@proxy.example.com:PORT
noProxy: <WILDCARD_OF_DOMAIN>,<PROVISIONING_NETWORK/CIDR>,<BMC_ADDRESS_RANGE/CIDR>

See below for an example of noProxy with values.
noProxy: .example.com,172.22.0.0/24,10.10.0.0/24

With a proxy enabled, set the appropriate values of the proxy in the corresponding key/value pair.

Key considerations:
* If the proxy does not have an HTTPS proxy, change the value of httpsProxy from https:// to
http://.
* If using a provisioning network, include it in the noProxy setting, otherwise the installer will fail.

* Set all of the proxy settings as environment variables within the provisioner node. For example,
HTTP_PROXY, HTTPS_PROXY, and NO_PROXY.

3.6.3. Modifying the install-config.yaml file for no provisioning network
(optional)

To deploy an OpenShift Container Platform cluster without a provisioning network, make the
following changes to the install-config.yaml file.

platform:
baremetal:
apiVIP: <apiVIP>
ingressVIP: <ingress/wildcard VIP>
provisioningNetwork: "Disabled"

3.6.4. Modifying the install-config.yaml file for dual-stack network
(optional)

To deploy an OpenShift Container Platform cluster with dual-stack networking, make the following
changes to the install-config.yaml file.

machineNetwork:

22

- cidr: {{ extcidrnet }}

- cidr: {{ extcidrnet6t }}

clusterNetwork:

- cidr: 10.128.0.0/14
hostPrefix: 23

- cidr: fd02::/48
hostPrefix: 64

serviceNetwork:

- 172.30.0.0/16

- £d03::/112

In the above snippet, the network settings must match the settings for the cluster’s

o network environment. The machineNetwork, clusterNetwork, and serviceNetwork
configuration settings must have two CIDR entries each. The first CIDR entry is the
IPv4 setting and the second CIDR entry is the IPv6 setting.

o The IPv4 entries must go before the IPv6 entries.

To deploy an OpenShift Container Platform cluster with dual-stack, deploy an additional manifest to
enable the FeatureGate with the following contents:

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
name: cluster
spec:
featureSet: IPv6DualStackNoUpgrade

3.6.5. Additional install-config parameters

See the following tables for the required parameters, the hosts parameter, and the bmc parameter
for the install-config.yaml file.

Table 2. Required parameters
Parameters Default Description

baseDomain The domain name for the
cluster. For example,
example.com.

bootMode legacy The boot mode for a node.

Options are legacy, UEFI and
UEFISecureBoot.

23

Parameters

sshKey

pullSecret

metadata:
name:

networking:
machineCIDR:

compute:
- name: worker

compute:
replicas: 2

controlPlane:
name: master

controlPlane:
replicas: 3

24

Default

Description

The sshKey configuration setting
contains the key in the
~/.ssh/id_rsa.pub file required
to access the control plane
nodes and worker nodes.
Typically, this key is from the
provisioner node.

The pullSecret configuration
setting contains a copy of the
pull secret downloaded from
the Install OpenShift on Bare
Metal page when preparing the
provisioner node.

The name to be given to the
OpenShift Container Platform
cluster. For example, openshift.

The public CIDR (Classless Inter-
Domain Routing) of the external
network. For example,
10.0.0.0/24 or
2620:52:0:1302::/64 .

The OpenShift Container
Platform cluster requires a
name be provided for worker
(or compute) nodes even if
there are zero nodes.

Replicas sets the number of
worker (or compute) nodes in
the OpenShift Container
Platform cluster.

The OpenShift Container
Platform cluster requires a
name for control plane (master)
nodes.

Replicas sets the number of
control plane (master) nodes
included as part of the
OpenShift Container Platform
cluster.

https://cloud.redhat.com/openshift/install/metal/user-provisioned
https://cloud.redhat.com/openshift/install/metal/user-provisioned

Parameters

provisioningNetworkInterface

defaultMachinePlatform

apiVIP

disableCertificateVerification

ingressVIP

Table 3. Optional Parameters

Parameters Default

provisioningDHCPRa
nge .0.100
provisioningNetwo
rkCIDR

clusterProvisionin The third IP

gIP address of the
provisioningNetwor
kCIDR.

bootstrapProvision The second IP

172.22.0.10,172.22

172.22.0.0/24

Default

api.<clustername.clusterdomain
>

False

test.apps.<clustername.cluster
domain>

Description

network.

Description

The name of the network
interface on control plane
nodes connected to the
provisioning network.

The default configuration used
for machine pools without a
platform configuration.

The VIP to use for internal API
communication.

This setting must either be
provided or pre-configured in
the DNS so that the default
name resolves correctly.

redfish and redfish-
virtualmedia need this
parameter to manage BMC
addresses. The value should be
True when using a self-signed
certificate for BMC addresses.

The VIP to use for ingress
traffic.

Defines the IP range for nodes on the provisioning

The CIDR for the network to use for provisioning. This

option is required when not using the default address
range on the provisioning network.

The IP address within the cluster where the provisioning

services run. Defaults to the third IP address of the
provisioning subnet. For example, 172.22.0.3.

The IP address on the bootstrap VM where the
provisioning services run while the installer is deploying
the control plane (master) nodes. Defaults to the second IP

address of the provisioning subnet. For example,

inglIP address of the
provisioningNetwor
kCIDR.
172.22.0.2 or 2620:52:0:1307::2 .
externalBridge baremetal

The name of the baremetal bridge of the hypervisor
attached to the baremetal network.

25

Parameters Default

provisioningBridge provisioning

defaultMachinePlat
form

bootstrap0SImage

clusterO0SImage

provisioningNetwor
k

httpProxy

httpsProxy

26

Description

The name of the provisioning bridge on the provisioner
host attached to the provisioning network.

The default configuration used for machine pools without
a platform configuration.

A URL to override the default operating system image for
the bootstrap node. The URL must contain a SHA-256 hash
of the image. For example: <code><a
href="https://mirror.openshift.com/rhcos-<version>-
gemu.qcow2.gz?sha256=<uncompressed_sha256>"
class="bare">https://mirror.openshift.com/rhcos-
<version>-gemu.qcow2.gz?
sha256=<uncompressed_sha256>;</code> or
<code>http://[2620:52:0:1307::1]/rhcos-<version>-
gemu.x86_64.qcow2.gz?sha256=<uncompressed_sha256
></code> .

A URL to override the default operating system for cluster
nodes. The URL must include a SHA-256 hash of the image.
For example, <code><a
href="https://mirror.openshift.com/images/rhcos-
<version>-
openstack.qcow2.gz?sha256=<compressed_sha256>"
class="bare">https://mirror.openshift.com/images/rhcos-
<version>-openstack.qcow2.gz?
sha256=<compressed_sha256>;</code>.

Set this parameter to Disabled to disable the requirement
for a provisioning network. User may only do virtual
media based provisioning, or bring up the cluster using
assisted installation. If using power management, BMC’s
must be accessible from the machine networks. User must
provide two IP addresses on the external network that are
used for the provisioning services. Set this parameter to
Managed, which is the default, to fully manage the
provisioning network, including DHCP, TFTP, and so on.

Set this parameter to Unmanaged to still enable the
provisioning network but take care of manual
configuration of DHCP. Virtual media provisioning is
recommended but PXE is still available if required.

Set this parameter to the appropriate HTTP proxy used
within your environment.

Set this parameter to the appropriate HTTPS proxy used
within your environment.

Parameters Default Description

noProxy Set this parameter to the appropriate list of exclusions for

proxy usage within your environment.
bootstrapExternal$S Set this parameter to the appropriate IP address on the
taticIP

baremetal network when the provisioningNetwork
configuration setting is set to Disabled.

bootstrapExternals Set this parameter to the appropriate GW address on the
taticGateway baremetal network when the provisioningNetwork
configuration setting is set to Disabled.

bootstrapExternals Set this parameter to the appropriate DNS address on the
taticDNS baremetal network when the provisioningNetwork
configuration setting is set to Disabled.

Hosts

The hosts parameter is a list of separate bare metal assets used to build the cluster.

Name Default Description

name The name of the BareMetalHost
resource to associate with the
details. For example, openshift-
master-0.

role The role of the bare metal node.
Either master or worker.

bme Connection details for the
baseboard management
controller. See the BMC
addressing section for
additional details.

bootMACAddress The MAC address of the NIC the
host will use to boot on the
provisioning network.

3.6.6. BMC addressing

Most vendors support BMC addressing with the Intelligent Platform Management Interface or IPMI.
IPMI does not encrypt communications. It is suitable for use within a data center over a secured or
dedicated management network. Check with your vendor to see if they support Redfish network
boot. Redfish delivers simple and secure management for converged, hybrid IT and the Software
Defined Data Center or SDDC. Redfish is human readable and machine capable, and leverages
common Internet and web services standards to expose information directly to the modern tool
chain. If your hardware does not support Redfish network boot, use IPMI.

IPMI
Hosts using IPMI use the ipmi://<out-of-band-ip>:<port> address format, which defaults to port 623

27

if not specified. The following example demonstrates an IPMI configuration within the install-
config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bme :
address: ipmi://<out-of-band-ip>
username: <user>
password: <password>

Redfish network boot

To enable Redfish, use redfish:// or redfish+http:// to disable TLS. The installer requires both the
host name or the IP address and the path to the system ID. The following example demonstrates a
Redfish configuration within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bme:
address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
username: <user>
password: <password>

While it is recommended to have a certificate of authority for the out-of-band management
addresses, you must include disableCertificateVerification: True in the bme configuration if using
self-signed certificates. The following example demonstrates a Redfish configuration using the
disableCertificateVerification: True configuration parameter within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bmc:
address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
username: <user>
password: <password>
disableCertificateVerification: True

28

BMC addressing for Dell iDRAC

The address field for each bmc entry is a URL for connecting to the OpenShift Container Platform
cluster nodes, including the type of controller in the URL scheme and its location on the network.

platform:
baremetal:
hosts:
- name: <host name>
role: <master | worker>
bmc:
address: <address> @
username: <user>
password: <password>

@ The address configuration setting specifies the protocol.

For Dell hardware, Red Hat supports integrated Dell Remote Access Controller (iDRAC) virtual
media, Redfish network boot, and IPMI.

Table 4. BMC address formats for Dell iDRAC

Protocol Address Format

iDRAC virtual media idrac-virtualmedia://<out-of-band-
ip>/redfish/v1/Systems/System.Embedded.1

Redfish network boot redfish://<out-of-band-
ip>/redfish/v1/Systems/System.Embedded.1

IPMI ipmi://<out-of-band-ip>

Use idrac-virtualmedia as the protocol for Redfish virtual media. redfish-
o virtualmedia will not work on Dell hardware. Dell’s idrac-virtualmedia uses the
Redfish standard with Dell’s OEM extensions.

See the following sections for additional details.

Redfish virtual media for Dell iDRAC

For Redfish virtual media on Dell servers, use idrac-virtualmedia:// in the address setting. Using
redfish-virtualmedia:// will not work.

The following example demonstrates using iDRAC virtual media within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bme:
address: idrac-virtualmedia://<out-of-band-
ip>/redfish/v1/Systems/System.Embedded.1

29

username: <user>
password: <password>

While it is recommended to have a certificate of authority for the out-of-band management
addresses, you must include disableCertificateVerification: True in the bme configuration if using
self-signed certificates. The following example demonstrates a Redfish configuration using the
disableCertificateVerification: True configuration parameter within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bme:
address: idrac-virtualmedia://<out-of-band-
ip>/redfish/v1/Systems/System.Embedded. 1
username: <user>
password: <password>
disableCertificateVerification: True

Currently, Redfish is only supported on Dell with iDRAC firmware versions
4.20.20.20 through 04.40.00.00 for installer-provisioned installations on bare
metal deployments. There is a known issue with version 04.40.00.00. With iDRAC 9
firmware version 04.40.00.00, the Virtual Console plug-in defaults to eHTML5, which
causes problems with the InsertVirtualMedia workflow. Set the plug-in to HTML5 to
avoid this issue. The menu path is: Configuration - Virtual console — Plug-in
Type —~ HTMLS .

Ensure the OpenShift Container Platform cluster nodes have AutoAttach Enabled
o through the iDRAC console. The menu path is: Configuration - Virtual Media -
Attach Mode — AutoAttach.

Use idrac-virtualmedia:// as the protocol for Redfish virtual media. Using redfish-
virtualmedia:// will not work on Dell hardware, because the idrac-
virtualmedia:// protocol corresponds to the idrac hardware type and the Redfish
protocol in Ironic. Dell’s idrac-virtualmedia:// protocol uses the Redfish standard
with Dell’s OEM extensions. Ironic also supports the idrac type with the WSMAN
protocol. Therefore, you must specify idrac-virtualmedia:// to avoid unexpected
behavior when electing to use Redfish with virtual media on Dell hardware.

Redfish network boot for iDRAC

To enable Redfish, use redfish:// or redfish+http:// to disable transport layer security (TLS). The
installer requires both the host name or the IP address and the path to the system ID. The following
example demonstrates a Redfish configuration within the install-config.yaml file.

platform:
baremetal:

30

hosts:
- name: openshift-master-0
role: master
bme:
address: redfish://<out-of-band-ip>/redfish/v1/Systems/System.Embedded.1
username: <user>
password: <password>

While it is recommended to have a certificate of authority for the out-of-band management
addresses, you must include disableCertificateVerification: True in the bme configuration if using
self-signed certificates. The following example demonstrates a Redfish configuration using the
disableCertificateVerification: True configuration parameter within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bmc:
address: redfish://<out-of-band-ip>/redfish/v1/Systems/System.Embedded.1
username: <user>
password: <password>
disableCertificateVerification: True

Currently, Redfish is only supported on Dell hardware with iDRAC firmware

versions 4.20.20.20 through 04.40.00.00 for installer-provisioned installations on

bare metal deployments. There is a known issue with version 04.40.00.00. With

iDRAC 9 firmware version 04.40.00.00, the Virtual Console plug-in defaults to

eHTML5, which causes problems with the InsertVirtualMedia workflow. Set the

plug-in to HTML5 to avoid this issue. The menu path is: Configuration - Virtual
o console — Plug-in Type -~ HTMLS .

Ensure the OpenShift Container Platform cluster nodes have AutoAttach Enabled
through the iDRAC console. The menu path is: Configuration -~ Virtual Media -
Attach Mode — AutoAttach .

The redfish:// URL protocol corresponds to the redfish hardware type in Ironic.

BMC addressing for HPE iLO

The address field for each bmc entry is a URL for connecting to the OpenShift Container Platform
cluster nodes, including the type of controller in the URL scheme and its location on the network.

platform:
baremetal:
hosts:
- name: <host name>
role: <master | worker>

31

bmc:
address: <address> @
username: <user>
password: <password>

@ The address configuration setting specifies the protocol.

For HPE integrated Lights Out (iLO), Red Hat supports Redfish virtual media, Redfish network boot,
and IPMIL.

Table 5. BMC address formats for HPE iLO

Protocol Address Format

Redfish virtual media redfish-virtualmedia://<out-of-band-
ip>/redfish/v1/Systems/1

Redfish network boot redfish://<out-of-band-
ip>/redfish/v1/Systems/1

IPMI ipmi://<out-of-band-ip>

See the following sections for additional details.

Redfish virtual media for HPE iL.O

To enable Redfish virtual media for HPE servers, use redfish-virtualmedia:// in the address setting.

The following example demonstrates using Redfish virtual media within the install-config.yaml
file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bme:
address: redfish-virtualmedia://<out-of-band-ip>/redfish/v1/Systems/1
username: <user>
password: <password>

While it is recommended to have a certificate of authority for the out-of-band management
addresses, you must include disableCertificateVerification: True in the bme configuration if using
self-signed certificates. The following example demonstrates a Redfish configuration using the
disableCertificateVerification: True configuration parameter within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bme:

address: redfish-virtualmedia://<out-of-band-ip>/redfish/v1/Systems/1

32

username: <user>
password: <password>
disableCertificateVerification: True

o Redfish virtual media is not supported on 9th generation systems running iL.O4,
because Ironic does not support iL0O4 with virtual media.

Redfish network boot for HPE iLO

To enable Redfish, use redfish:// or redfish+http:// to disable TLS. The installer requires both the
host name or the IP address and the path to the system ID. The following example demonstrates a
Redfish configuration within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bme:
address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
username: <user>
password: <password>

While it is recommended to have a certificate of authority for the out-of-band management
addresses, you must include disableCertificateVerification: True in the bme configuration if using
self-signed certificates. The following example demonstrates a Redfish configuration using the
disableCertificateVerification: True configuration parameter within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bmc:
address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
username: <user>
password: <password>
disableCertificateVerification: True

BMC addressing for KVM with sushy-tools Redfish emulator
The address field for each bmc entry is a URL for connecting to the OpenShift Container Platform

cluster nodes, including the type of controller in the URL scheme and its location on the network.

platform:
baremetal:
hosts:

33

- name: <host name>

role: <master | worker>
bme:

address: <address> @
username: <user>
password: <password>

@ The address configuration setting specifies the protocol.

For KVM working with sushy-tools Redfish emulator, Red Hat supports Redfish virtual media and

Redfish network boot.

Table 6. BMC address formats for KVM with sushy-tools Redfish emulator

Protocol Address Format

Redfish virtual media redfish-virtualmedia://<out-of-band-
ip>:<sushy-tools-
port>/redfish/v1/Systems/<system-id>

Redfish network boot redfish://<out-of-band-ip>:<sushy-tools-

port>/redfish/v1/Systems/<system-id>

The sushy-tools Redfish emulator runs from the KVM hypervisor and a single
instance acts as the virtual BMC for all the guest machines. This means both the
out of band IP address and port, will be same and each individual machine must
be identified by its System ID.

You may retrieve the System ID of your guest machines with the following
command:

$ virsh list --all --name --uuid
d8acbbf8-3062-4954-84c3-e097faa17025 compute-0
84971a71-3935-4392-8d90-a9f8440dac@9 compute-1
92430142-8805-4412-9593-2a7252¢7¢540 compute-2
0fea5296-db95-41d7-9295-f57cfa50255f control-plane-0
4986e405-fd3a-483d-9210-8cb120b98f80 control-plane-1
26bf228c-44fd-4c49-9e6f-44f4b5968b34 control-plane-2

See the following sections for additional details.

Redfish virtual media for KVM with sushy-tools Redfish emulator

To enable Redfish virtual media for KVM environments running the sushy-tools Redfish emulator,
use redfish-virtualmedia:// in the address setting. The following example demonstrates using

Redfish virtual media within the install-config.yaml file.

platform:

baremetal:

34

hosts:
- name: openshift-master-0

role: master

bmc:
address: redfish-virtualmedia://<out-of-band-ip>:<sushy-tools-

port>/redfish/v1/Systems/<system-1id>

username: <user>
password: <password>

While it is recommended to have a certificate of authority for the out-of-band management
addresses, you must include disableCertificateVerification: True in the bmc configuration if using
self-signed certificates. The following example demonstrates a Redfish configuration using the
disableCertificateVerification: True configuration parameter within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bmc:
address: redfish-virtualmedia://<out-of-band-ip>:<sushy-tools-
port>/redfish/v1/Systems/<system-id>
username: <user>
password: <password>
disableCertificateVerification: True

Redfish network boot for KVM with sushy-tools Redfish emulator

To enable Redfish, use redfish:// or redfish+http:// to disable TLS. The installer requires the host
name or the IP address, the Redfish emulator listening port and the path to the system ID. The
following example demonstrates a Redfish configuration within the install-config.yaml file.

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bmc:
address: redfish://<out-of-band-ip>:<sushy-tools-
port>/redfish/v1/Systems/<system-id>
username: <user>
password: <password>

While it is recommended to have a certificate of authority for the out-of-band management
addresses, you must include disableCertificateVerification: True in the bmc configuration if using
self-signed certificates. The following example demonstrates a Redfish configuration using the
disableCertificateVerification: True configuration parameter within the install-config.yaml file.

35

platform:
baremetal:
hosts:
- name: openshift-master-0
role: master
bmc:
address: redfish://<out-of-band-ip>:<sushy-tools-
port>/redfish/v1/Systems/<system-id>
username: <user>
password: <password>
disableCertificateVerification: True

3.6.7. Root device hints

The rootDeviceHints parameter enables the installer to provision the Red Hat Enterprise Linux
CoreOS (RHCOS) image to a particular device. The installer examines the devices in the order it
discovers them, and compares the discovered values with the hint values. The installer uses the
first discovered device that matches the hint value. The configuration can combine multiple hints,
but a device must match all hints for the installer to select it.

Table 7. Subfields

Subfield Description

deviceName A string containing a Linux device name like
/dev/vda. The hint must match the actual value
exactly.

hetl A string containing a SCSI bus address like
0:0:0:0. The hint must match the actual value
exactly.

model A string containing a vendor-specific device
identifier. The hint can be a substring of the
actual value.

vendor A string containing the name of the vendor or

manufacturer of the device. The hint can be a
sub-string of the actual value.

serialNumber A string containing the device serial number.
The hint must match the actual value exactly.

minSizeGigabytes An integer representing the minimum size of the
device in gigabytes.

wwn A string containing the unique storage identifier.
The hint must match the actual value exactly.

wwnWithExtension A string containing the unique storage identifier
with the vendor extension appended. The hint
must match the actual value exactly.

36

Subfield Description

wwnVendorExtension A string containing the unique vendor storage
identifier. The hint must match the actual value
exactly.

rotational A Boolean indicating whether the device should

be a rotating disk (true) or not (false).
Example usage

- name: master-0
role: master
bmc:
address: ipmi://10.10.0.3:6203
username: admin
password: redhat
bootMACAddress: de:ad:be:ef:00:40
rootDeviceHints:
deviceName: "/dev/sda"

3.6.8. Creating the OpenShift Container Platform manifests

1. Create the OpenShift Container Platform manifests.

[kni@provisioner ~]$./openshift-baremetal-install --dir ~/clusterconfigs create
manifests

INFO Consuming Install Config from target directory

WARNING Making control-plane schedulable by setting MastersSchedulable to true for
Scheduler cluster settings

WARNING Discarding the Openshift Manifest that was provided in the target directory
because its dependencies are dirty and it needs to be regenerated

3.7. Creating a disconnected registry (optional)

In some cases, you might want to install an OpenShift Container Platform cluster using a local copy
of the installation registry. This could be for enhancing network efficiency because the cluster
nodes are on a network that does not have access to the internet.

Alocal, or mirrored, copy of the registry requires the following:

* A certificate for the registry node. This can be a self-signed certificate.
* A web server that a container on a system will serve.

* An updated pull secret that contains the certificate and local repository information.

37

Creating a disconnected registry on a registry node is optional. The subsequent
sections indicate that they are optional since they are steps you need to execute
o only when creating a disconnected registry on a registry node. You should execute
all of the subsequent sub-sections labeled "(optional)" when creating a
disconnected registry on a registry node.
3.7.1. Preparing the registry node to host the mirrored registry (optional)

Make the following changes to the registry node.

Procedure

1. Open the firewall port on the registry node.

[user@registry ~]$ sudo firewall-cmd --add-port=5000/tcp --zone=1ibvirt
--permanent

[user@registry ~]$ sudo firewall-cmd --add-port=5000/tcp --zone=public
--permanent

[user@registry ~]$ sudo firewall-cmd --reload

2. Install the required packages for the registry node.
[user@registry ~]$ sudo yum -y install python3 podman httpd httpd-tools jq
3. Create the directory structure where the repository information will be held.

[user@registry ~]$ sudo mkdir -p /opt/registry/{auth,certs,data}

3.7.2. Generating the self-signed certificate (optional)

Generate a self-signed certificate for the registry node and put it in the /opt/registry/certs
directory.

Procedure

1. Adjust the certificate information as appropriate.

[user@registry ~]$ host_fqdn=$(hostname --long)
[user@registry ~]$ cert_c="<Country Name>" # Country Name (C, 2 letter code)

[user@registry ~]$ cert_s="<State>" # Certificate State (S)
[user@registry ~]$ cert_1="<Locality>" # Certificate Locality (L)
[user@registry ~]$ cert_o="<Organization>" # Certificate Organization (0)

[user@registry ~]$ cert_ou="<0rg Unit>" # Certificate Organizational Unit (0OU)
[user@registry ~]$ cert_cn="${host_fqdn}" #f Certificate Common Name (CN)

[user@registry ~]$ openssl req \
-newkey rsa:4096 \

38

-nodes \

-sha256 \

-keyout /opt/registry/certs/domain.key \

-x509 \

-days 365 \

-out /opt/registry/certs/domain.crt \

-addext "subjectAltName = DNS:${host_fqdn}" \

-subj "/C=${cert_c}/ST=${cert_s}/L=${cert_1}/0=${cert_o}/0U=${cert_ou}/CN=
${cert_cn}"

o When replacing <Country Name>, ensure that it only contains two letters. For
example, US.

2. Update the registry node’s ca-trust with the new certificate.

[user@registry ~]$ sudo cp /opt/registry/certs/domain.crt /etc/pki/ca-
trust/source/anchors/
[user@registry ~]$ sudo update-ca-trust extract

3.7.3. Creating the registry podman container (optional)

The registry container uses the /opt/registry directory for certificates, authentication files, and to
store its data files.

The registry container uses httpd and needs an htpasswd file for authentication.

Procedure

1. Create an htpasswd file in /opt/registry/auth for the container to use.
[user@registry ~]$ htpasswd -bBc /opt/registry/auth/htpasswd <user> <passwd>

Replace <user> with the user name and <passwd> with the password.

2. Create and start the registry container.

[user@registry ~]$ podman create \
--name ocpdiscon-registry \
-p 5000:5000 \
-e "REGISTRY_AUTH=htpasswd" \
-e "REGISTRY_AUTH_HTPASSWD_REALM=Registry" \
-e "REGISTRY_HTTP_SECRET=ALongRandomSecretForRegistry" \
-e "REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd" \
-e "REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt" \
-e "REGISTRY_HTTP_TLS_KEY=/certs/domain.key" \
-e "REGISTRY_COMPATIBILITY_SCHEMA1_ENABLED=true" \
-v /opt/registry/data:/var/lib/registry:z \
-v /opt/registry/auth:/auth:z \

39

-v /opt/registry/certs:/certs:z \
docker.io/library/registry:2

[user@registry ~]$ podman start ocpdiscon-registry

3.7.4. Copy and update the pull-secret (optional)

Copy the pull secret file from the provisioner node to the registry node and modify it to include the
authentication information for the new registry node.

Procedure

1. Copy the pull-secret.txt file.
[user@registry ~]$ scp kni@provisioner:/home/kni/pull-secret.txt pull-secret.txt

2. Update the host_fqdn environment variable with the fully qualified domain name of the registry
node.

[user@registry ~]$ host_fqdn=$(hostname --long)

3. Update the b64auth environment variable with the base64 encoding of the http credentials used
to create the htpasswd file.

[user@registry ~]$ b64auth=$§(echo -n '<username>:<passwd>' | openssl base64)

Replace <username> with the user name and <passwd> with the password.

4. Set the AUTHSTRING environment variable to use the base64 authorization string. The $USER
variable is an environment variable containing the name of the current user.

[user@registry ~]$ AUTHSTRING="{\"$host_fqdn:5000\": {\"auth\": \"$bb64auth\",
\"email\": \"$USER@redhat.com\"}}"

5. Update the pull-secret.txt file.

[user@registry ~]$ jq ".auths += $AUTHSTRING" < pull-secret.txt > pull-secret-
update.txt

3.7.5. Mirroring the repository (optional)

Procedure

1. Copy the oc binary from the provisioner node to the registry node.

40

[user@registry ~]$ sudo scp kni@provisioner:/usr/local/bin/oc /usr/local/bin
2. Get the release image and mirror the remote install images to the local repository.

[user@registry ~]$ export VERSION=1latest-4.7
[user@registry ~]$ UPSTREAM_REPO=$(curl -s
https://mirror.openshift.com/pub/openshift-
v4/x86_64/clients/ocp/$VERSION/release.txt | awk '/Pull From/ {print $3}')
[user@registry ~]$ /usr/local/bin/oc adm release mirror \
-3 pull-secret-update.txt
--from=$UPSTREAM_REPO \
--to-release-image=$LOCAL_REG/$LOCAL_REPO:${VERSION} \
--to=$LOCAL_REG/$LOCAL_REPO

3.7.6. Modify the install-config.yaml file to use the disconnected registry
(optional)

On the provisioner node, the install-config.yaml file should use the newly created pull-secret from
the pull-secret-update.txt file. The install-config.yaml file must also contain the disconnected
registry node’s certificate and registry information.

Procedure

1. Add the disconnected registry node’s certificate to the install-config.yaml file. The certificate
should follow the "additionalTrustBundle: |" line and be properly indented, usually by two
spaces.

$ echo "additionalTrustBundle: |" >> install-config.yaml
$ sed -e 's/A/ /' /opt/registry/certs/domain.crt >> install-config.yaml

2. Add the mirror information for the registry to the install-config.yaml file.

$ cat <<EOF >> install-config.yaml
<image-config>: @
- mirrors:
- registry.example.com:5000/0cp4/openshiftd
source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
- mirrors:
- registry.example.com:5000/0cp4/openshift4
source: registry.svc.ci.openshift.org/ocp/release
- mirrors:
- registry.example.com:5000/0cp4/openshift4
source: quay.io/openshift-release-dev/ocp-release
EOF

Where:

41

® You must replace <image-config> with imageContentSources for OpenShift 4.13 and below, or
imageDigestSources for Openshift 4.14 and above.

o Replace registry.example.com with the registry’s fully qualified domain
name.

3.8. Deploying routers on worker nodes

During installation, the installer deploys router pods on worker nodes. By default, the installer
installs two router pods. If the initial cluster has only one worker node, or if a deployed cluster
requires additional routers to handle external traffic loads destined for services within the
OpenShift Container Platform cluster, you can create a yaml file to set an appropriate number of
router replicas.

By default, the installer deploys two routers. If the cluster has at least two worker
o nodes, you can skip this section. For more information on the Ingress Operator see:
Ingress Operator in OpenShift Container Platform.

If the cluster has no worker nodes, the installer deploys the two routers on the
o control plane nodes by default. If the cluster has no worker nodes, you can skip
this section.

Procedure

1. Create a router-replicas.yaml file.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: <num-of-router-pods>
endpointPublishingStrategy:
type: HostNetwork
nodePlacement:
nodeSelector:
matchlLabels:
node-role.kubernetes.io/worker:

Replace <num-of-router-pods> with an appropriate value. If working with just
o one worker node, set replicas: to 1. If working with more than 3 worker nodes,
you can increase replicas: from the default value 2 as appropriate.

2. Save and copy the router-replicas.yanml file to the clusterconfigs/openshift directory.

cp ~/router-replicas.yaml clusterconfigs/openshift/99_router-replicas.yaml

42

https://docs.openshift.com/container-platform/4.6/networking/ingress-operator.html

3.9. Validation checklist for installation

O OpenShift Container Platform installer has been retrieved.

O OpenShift Container Platform installer has been extracted.

Required parameters for the install-config.yaml have been configured.

The hosts parameter for the install-config.yaml has been configured.

The bmec parameter for the install-config.yaml has been configured.
Conventions for the values configured in the bmc address field have been applied.
Created a disconnected registry (optional).

Validate disconnected registry settings if in use. (optional)

0 0O 0O 0o o oo

Deployed routers on worker nodes. (optional)

3.10. Deploying the cluster via the OpenShift Container
Platform installer

Run the OpenShift Container Platform installer:

[kni@provisioner ~]$./openshift-baremetal-install --dir ~/clusterconfigs --log-level
debug create cluster

3.11. Following the installation

During the deployment process, you can check the installation’s overall status by issuing the tail
command to the .openshift_install.log log file in the install directory folder.

[kni@provisioner ~]$ tail -f /path/to/install-dir/.openshift_install.log

3.12. Verifying static IP address configuration

If the DHCP reservation for a cluster node specifies an infinite leases, after the installer successfully
provisions the node, the dispatcher script will check the node’s network configuration. If the script
determines that the network configuration contains an infinite DHCP lease, it creates a new
connection using the IP address of the DHCP lease as a static IP address.

o The dispatcher script may run on successfully provisioned nodes while the
provisioning of other nodes in the cluster is ongoing.

To verify the network configuration is working properly, you can:

* Check the network interface configuration on the node.

* Turn off the DHCP server and reboot the OpenShift Container Platform node and and ensure

43

44

that the network configuration works properly.

Chapter 4. Day 2 operations

The following sections are optional, but may be of interest after the initial deployment has been
completed.

4.1. Accessing the web console

The web console runs as a pod on the master. The static assets required to run the web console are
served by the pod. Once OpenShift Container Platform is successfully installed, find the URL for the
web console and login credentials for your installed cluster in the CLI output of the installation
program. For example:

Example output

INFO Install complete!

INFO Run "export KUBECONFIG=<your working directory>/auth/kubeconfig' to manage the
cluster with 'oc', the OpenShift CLI.

INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>' succeeds (wait a
few minutes).

INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.demol.openshift4-beta-abcorp.com

INFO Login to the console with user: kubeadmin, password: <provided>

Use those details to log in and access the web console.

Additionally, you can execute:
oc whoami --show-console

To obtain the url for the console.

4.2. Backing up the cluster configuration

At this point you have a working OpenShift 4 cluster on baremetal. In order to take advantage of
the baremetal hardware that was the provision node, you can repurpose the provisioning node as a
worker. Prior to reprovisioning the node, it is recommended to backup some existing files.

Procedure

1. Tar the clusterconfig folder and download it to your local machine.
tar cvfz clusterconfig.tar.gz ~/clusterconfig

2. Copy the Private part for the SSH Key configured on the install-config.yaml file to your local
machine.

45

tar cvfz clusterconfigsh.tar.gz ~/.ssh/id_rsa*
3. Copy the install-config.yaml and metal3-config.yaml files.

tar cvfz yamlconfigs.tar.gz install-config.yaml metal3-config.yaml

4.3. Expanding the cluster

After deploying an installer-provisioned OpenShift Container Platform cluster, you can use the
following procedures to expand the number of worker nodes. Ensure that each prospective worker
node meets the prerequisites.

Expanding the cluster using RedFish Virtual Media involves meeting minimum

o firmware requirements. See Firmware requirements for installing with virtual
media in the Prerequisites section for additional details when expanding the
cluster using RedFish Virtual Media.

4.3.1. Preparing the bare metal node

Expanding the cluster requires a DHCP server. Each node must have a DHCP reservation.

Reserving IP addresses so they become static IP addresses

Some administrators prefer to use static IP addresses so that each node’s IP
address remains constant in the absence of a DHCP server. To use static IP
addresses in the OpenShift Container Platform cluster, reserve the IP addresses

o in the DHCP server with an infinite lease. After the installer provisions the node
successfully, the dispatcher script will check the node’s network configuration. If
the dispatcher script finds that the network configuration contains a DHCP infinite
lease, it will recreate the connection as a static IP connection using the IP address
from the DHCP infinite lease. NICs without DHCP infinite leases will remain
unmodified.

Preparing the bare metal node requires executing the following procedure from the provisioner
node.

Procedure

1. Get the oc binary, if needed. It should already exist on the provisioner node.

[kni@provisioner ~]$ export VERSION=latest-4.7
[kni@provisioner ~]$ curl -s https://mirror.openshift.com/pub/openshift-
v4/clients/ocp/$VERSION/openshift-client-1linux-$VERSION.tar.gz | tar zxvf - oc

[kni@provisioner ~]$ sudo cp oc /usr/local/bin

46

2. Power off the bare metal node via the baseboard management controller and ensure it is off.

3. Retrieve the user name and password of the bare metal node’s baseboard management
controller. Then, create baseb4 strings from the user name and password. In the following
example, the user name is root and the password is calvin.

[kni@provisioner ~]$ echo -ne "root" | base64

[kni@provisioner ~]$ echo -ne "calvin" | base64
4. Create a configuration file for the bare metal node.

[kni@provisioner ~]$ vim bmh.yaml

apiVersion: v1
kind: Secret
metadata:
name: openshift-worker-<num>-bmc-secret
type: Opaque
data:
username: <baseb4-of-uid>
password: <baseb4-of-pwd>
apiVersion: metal3.io/vlalphal
kind: BareMetalHost
metadata:
name: openshift-worker-<num>
spec:
online: true
bootMACAddress: <NIC1-mac-address>
bmc:
address: <protocol>://<bmc-ip>
credentialsName: openshift-worker-<num>-bmc-secret

Replace <num> for the worker number of the bare metal node in the two name fields and the
credentialsName field. Replace <base64-of-uid> with the base64 string of the user name. Replace
<baseb4-of-pwd> with the baseb4 string of the password. Replace <NIC1-mac-address> with the
MAC address of the bare metal node’s first NIC.

Refer to the BMC addressing section for additional BMC configuration options. Replace
<protocol> with the BMC protocol, such as IPMI, RedFish, or others. Replace <bmc-ip> with the IP
address of the bare metal node’s baseboard management controller.

o If the MAC address of an existing bare metal node matches the MAC address of
a bare metal host that you are attempting to provision, then the Ironic

47

installation will fail. If the host enrollment, inspection, cleaning, or other Ironic
steps fail, the metal3-baremetal-operator will continuously retry. See
Diagnosing a host duplicate MAC address for more information.

5. Create the bare metal node.

[knieprovisioner ~]$ oc -n openshift-machine-api create -f bmh.yaml

secret/openshift-worker-<num>-bmc-secret created
baremetalhost.metal3.io/openshift-worker-<num> created

Where <num> will be the worker number.

6. Power up and inspect the bare metal node.

[kni@provisioner ~]$ oc -n openshift-machine-api get bmh openshift-worker-<num>

Where <num> is the worker node number.

NAME STATUS ~ PROVISIONING STATUS CONSUMER BMC

HARDWARE PROFILE ONLINE ERROR

openshift-worker-<num> 0K ready ipmi://<out-of-
band-ip> unknown true

4.3.2. Preparing to deploy with Virtual Media on the baremetal network

If the provisioning network is enabled, and you want to expand the cluster using Virtual Media on
the baremetal network, execute the following procedure.

Procedure

1. Edit the provisioning configuration resource (CR) to enable deploying with Virtual Media on the
baremetal network.

oc edit provisioning

apiVersion: metal3.io/vl1alphal
kind: Provisioning
metadata:
creationTimestamp: "2021-08-05T18:51:50Z2"
finalizers:
- provisioning.metal3.io
generation: 8
name: provisioning-configuration

48

resourceVersion: "551591"
uid: f76e956f-24c6-4361-aabb-feaf72c5b526
spec:
preProvisioning0SDownloadURLs: {}
provisioningDHCPRange: 172.22.0.10,172.22.0.254
provisioningIP: 172.22.0.3
provisioningInterface: enp1s0
provisioningNetwork: Managed
provisioningNetworkCIDR: 172.22.0.0/24
provisioning0SDownloadURL: http://192.168.111.1/images/rhcos-
49.84.202107010027-0-
openstack.x86_64.qcow2.gz?sha256=c7dde5f96826c33c97b534ad341102122819161283e1110095
6f400db3d5299e
virtualMediaViaExternalNetwork: true @
status:
generations:
- group: apps
hash: ""
lastGeneration: 7
name: metal3
namespace: openshift-machine-api
resource: deployments
- group: apps
hash: ""
lastGeneration: 1
name: metal3-image-cache
namespace: openshift-machine-api
resource: daemonsets
observedGeneration: 8
readyReplicas: 0

@ Add virtualMediaViaExternalNetwork: true to the provisioning CR.

2. Edit the machine set to use the API VIP address.

oc edit machineset

apiVersion: machine.openshift.io/vibetal
kind: MachineSet
metadata:
creationTimestamp: "2021-08-05T18:51:527"
generation: 11
labels:
machine.openshift.io/cluster-api-cluster: ostest-hwmdt
machine.openshift.io/cluster-api-machine-role: worker
machine.openshift.io/cluster-api-machine-type: worker
name: ostest-hwmdt-worker-0
namespace: openshift-machine-api
resourceVersion: "551513"

49

uid: fadlcbe@-b9da-4d4a-8d73-28678788931
spec:
replicas: 2
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: ostest-hwmdt
machine.openshift.io/cluster-api-machineset: ostest-hwmdt-worker-0
template:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: ostest-hwmdt
machine.openshift.io/cluster-api-machine-role: worker
machine.openshift.io/cluster-api-machine-type: worker
machine.openshift.io/cluster-api-machineset: ostest-hwmdt-worker-0
spec:
metadata: {}
providerSpec:
value:
apiVersion: baremetal.cluster.k8s.i0/v1alphal
hostSelector: {}
image:
checksum: http:/172.22.0.3:6181/images/rhcos-49.84.202107010027-0-
openstack.x86_64.qcow2/cached-rhcos-49.84.202107010027-0-
openstack.x86_64.qcow2.md5sum @
url: http://172.22.0.3:6181/images/rhcos-49.84.202107010027-0-
openstack.x86_64.qcow2/cached-rhcos-49.84.202107010027-0-openstack.x86_64.qcow2 @
kind: BareMetalMachineProviderSpec
metadata:
creationTimestamp: null
userData:
name: worker-user-data
status:
availableReplicas: 2
fullyLabeledReplicas: 2
observedGeneration: 11
readyReplicas: 2
replicas: 2

@ Edit the checksum URL to use the API VIP address.
@ Edit the url URL to use the API VIP address.

Diagnosing a duplicate MAC address when provisioning a new host in the cluster

If the MAC address of an existing bare-metal node in the cluster matches the MAC address of a bare-
metal host you are attempting to add to the cluster, the Bare Metal Operator associates the host
with the existing node. If the host enrollment, inspection, cleaning, or other Ironic steps fail, the
Bare Metal Operator retries the installation continuously. A registration error is displayed for the
failed bare-metal host.

You can diagnose a duplicate MAC address by examining the bare-metal hosts that are running in

50

the openshift-machine-api namespace.

Prerequisites

* Install an OpenShift Container Platform cluster on bare metal.
¢ Install the OpenShift Container Platform CLI oc.

* Login as a user with cluster-admin privileges.

Procedure

To determine whether a bare-metal host that fails provisioning has the same MAC address as an
existing node, do the following:

1. Get the bare-metal hosts running in the openshift-machine-api namespace:

$ oc get bmh -n openshift-machine-api

Example output

NAME STATUS ~ PROVISIONING STATUS CONSUMER
openshift-master-0 0K externally provisioned openshift-zpwpg-master-0
openshift-master-1 0K externally provisioned openshift-zpwpg-master-1
openshift-master-2 0K externally provisioned openshift-zpwpg-master-2
openshift-worker-0 OK provisioned openshift-zpwpg-worker-0-
1v84n

openshift-worker-1 0K provisioned openshift-zpwpg-worker-0-
zd81m

openshift-worker-2 error registering

2. To see more detailed information about the status of the failing host, run the following
command replacing <bare_metal_host_name> with the name of the host:

$ oc get -n openshift-machine-api bmh <bare_metal_host_name> -0 yaml

Example output

status:

errorCount: 12

errorMessage: MAC address b4:96:91:1d:7c:20 conflicts with existing node
openshift-worker-1

errorType: registration error

4.3.3. Provisioning the bare metal node

Provisioning the bare metal node requires executing the following procedure from the provisioner
node.

31

Procedure

1. Ensure the PROVISIONING STATUS is ready before provisioning the bare metal node.

[kni@provisioner ~]$ oc -n openshift-machine-api get bmh openshift-worker-<num>

Where <num> is the worker node number.

NAME STATUS ~ PROVISIONING STATUS CONSUMER BMC

HARDWARE PROFILE ONLINE ERROR

openshift-worker-<num> 0K ready ipmi://<out-of-
band-ip> unknown true

2. Get a count of the number of worker nodes.

[kni@provisioner ~]$ oc get nodes

NAME STATUS ROLES AGE
VERSION

provisioner.openshift.example.com Ready master 30h
v1.16.2

openshift-master-1.openshift.example.com Ready master 30h
v1.16.2

openshift-master-2.openshift.example.com Ready master 30h
v1.16.2

openshift-master-3.openshift.example.com Ready master 30h
v1.16.2

openshift-worker-0.openshift.example.com Ready master 30h
v1.16.2

openshift-worker-1.openshift.example.com Ready master 30h
v1.16.2

3. Get the machine set.

[kni@provisioner ~]$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
openshift-worker-0.example.com 1 1 1 1 55m
openshift-worker-1.example.com 1 1 1 1 55m

4. Increase the number of worker nodes by one.

[kni@provisioner ~]$ oc scale --replicas=<num> machineset <machineset> -n

32

openshift-machine-api

Replace <num> with the new number of worker nodes. Replace <machineset> with the name of the
machine set from the previous step.

5. Check the status of the bare metal node.

[kni@provisioner ~]$ oc -n openshift-machine-api get bmh openshift-worker-<num>

Where <num> is the worker node number. The status changes from ready to provisioning.

NAME STATUS PROVISIONING STATUS CONSUMER BMC
HARDWARE PROFILE ONLINE ERROR

openshift-worker-<num> 0K provisioning openshift-worker-<num>-
65tjz ipmi://<out-of-band-ip> unknown true

The provisioning status remains until the OpenShift Container Platform cluster provisions the
node. This can take 30 minutes or more. Once complete, the status will change to provisioned.

NAME STATUS PROVISIONING STATUS CONSUMER BMC
HARDWARE PROFILE ONLINE ERROR

openshift-worker-<num> 0K provisioned openshift-worker-<num>-
65tjz ipmi://<out-of-band-ip> unknown true

6. Once provisioned, ensure the bare metal node is ready.

[kni@provisioner ~]$ oc get nodes

NAME STATUS ROLES AGE VERSION
provisioner.openshift.example.com Ready master 30h v1.16.2
openshift-master-1.openshift.example.com Ready master 30h v1.16.2
openshift-master-2.openshift.example.com Ready master 30h v1.16.2
openshift-master-3.openshift.example.com Ready master 30h v1.16.2
openshift-worker-0.openshift.example.com Ready master 30h v1.16.2
openshift-worker-1.openshift.example.com Ready master 30h v1.16.2
openshift-worker-<num>.openshift.example.com Ready worker 3m27s v1.16.2

You can also check the kubelet.

[kni@provisioner ~]$ ssh openshift-worker-<num>

[kni@openshift-worker-<num>]$ journalctl -fu kubelet

33

4.3.4. Preparing the provisioner node to be deployed as a worker node

Procedure

Perform the following steps prior to converting the provisioner node to a worker node.

1.

ssh to a system (for example, a laptop) that can access the out of band management network of
the current provisioner node.

Copy the backups clusterconfig.tar.gz, clusterconfigsh.tar.gz, and amlconfigs.tar.qgz to the
new system.

Copy the oc binary from the existing provisioning node to the new system.

Make a note of the mac addresses, the baremetal network IP used for the provisioner node, and
the IP address of the Out of band Management Network.

Reboot the system and ensure that PXE is enabled on the provisioning network and PXE is
disabled for all other NICs.

If installation was performed using a Satellite server, remove the Host entry for the existing
provisioning node.

Install the ipmitool on the new system in order to power off the provisioner node.

4.3.5. Adding a worker node to an existing cluster

Procedure

1.

2.

54

Retrieve the username and password of the bare metal node’s baseboard management
controller. Then, create base64 strings from the username and password. In the following
example, the username is root and the password is calvin.

[kni@provisioner ~]$ echo -ne "root" | baseb4

[kni@provisioner ~]§ echo -ne "calvin" | base64

Create a configuration file for the bare metal node.

[kni@provisioner ~]$ vim bmh.yaml

apiVersion: v
kind: Secret
metadata:
name: openshift-worker-<num>-bmc-secret
type: Opaque
data:
username: <baseb4-of-uid>
password: <baseb4-of-pwd>

apiVersion: metal3.io/vi1alphal
kind: BareMetalHost
metadata:
name: openshift-worker-<num>
spec:
online: true
bootMACAddress: <NIC1-mac-address>
bmc:
address: 1ipmi://<bmc-ip>
credentialsName: openshift-worker-<num>-bmc-secret

Replace <num> for the worker number of bare metal node in two name fields and credentialsName
field. Replace <base64-of-uid> with the base64 string of the username. Replace <baseb4-of-pwd>
with the baseb64 string of the password. Replace <NICT-mac-address> with the MAC address of the
bare metal node’s first NIC. Replace <bmc-ip> with the IP address of the bare metal node’s
baseboard management controller.

o When using redfish or redfish-virtualmedia, add the appropriate addressing as
described in the BMC addressing section. See BMC addressing for details.

1. Create the bare metal node.

[knieprovisioner ~]$ oc -n openshift-machine-api create -f bmh.yaml

secret/openshift-worker-<num>-bmc-secret created
baremetalhost.metal3.io/openshift-worker-<num> created

Where <num> will be the worker number.

2. Power up and inspect the bare metal node.
[kni@provisioner ~]$ oc -n openshift-machine-api get bmh openshift-worker-<num>

Where <num> is the worker node number.

NAME STATUS PROVISIONING STATUS CONSUMER BMC

HARDWARE PROFILE ONLINE ERROR

openshift-worker-<num> 0K ready ipmi://<out-of-
band-ip> unknown true

3. Ensure the PROVISIONING STATUS is ready before provisioning the bare metal node.

[kni@provisioner ~]$ oc -n openshift-machine-api get bmh openshift-worker-<num>

55

Where <num> is the worker node number.

NAME STATUS ~ PROVISIONING STATUS CONSUMER BMC

HARDWARE PROFILE ONLINE ERROR

openshift-worker-<num> 0K ready ipmi://<out-of-
band-ip> unknown true

4. Get a count of the number of worker nodes.

[kni@provisioner ~]$ oc get nodes

5. Get the machine set.

[knieprovisioner ~]$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
openshift-worker-0.example.com 1 1 1 1 55m
openshift-worker-1.example.com 1 1 1 1 55m
openshift-worker-2.example.com 1 1 1 1 55m

6. Increase the number of worker nodes by 1.

[kni@provisioner ~]$ oc scale --replicas=<num> machineset <machineset> -n
openshift-machine-api

Replace <num> with the new number of worker nodes. Replace <machineset> with the name of the

machine set from the previous step.

7. Check the status of the bare metal node.

[kni@provisioner ~]$ oc -n openshift-machine-api get bmh openshift-worker-<num>

Where <num> is the worker node number. The status changes from ready to provisioning.

NAME STATUS ~ PROVISIONING STATUS CONSUMER BMC
HARDWARE PROFILE ONLINE ERROR

openshift-worker-<num> 0K provisioning openshift-worker-<num>-
65tjz ipmi://<out-of-band-ip> unknown true

The provisioning status remains until the OpenShift Container Platform cluster provisions the
node. This may take 30 minutes or more. Once complete, the status will change to provisioned.

36

NAME STATUS PROVISIONING STATUS CONSUMER
HARDWARE PROFILE ONLINE ERROR
openshift-worker-<num> 0K provisioned

65tjz ipmi://<out-of-band-ip> unknown true

8. Once provisioned, ensure the bare metal node is ready.

[kni@provisioner ~]$ oc get nodes

NAME STATUS ROLES
VERSION

provisioner.openshift.example.com Ready master
v1.16.2

openshift-master-1.openshift.example.com Ready master
v1.16.2

openshift-master-2.openshift.example.com Ready master
v1.16.2

openshift-worker-<num>.openshift.example.com Ready worker
v1.16.2

You can also check the kubelet.

[kni@provisioner ~]$ ssh openshift-worker-<num>

[kni@openshift-worker-<num>]$ journalctl -fu kubelet

Appending DNS records

Configuring Bind (Option 1)
Procedure
1. Login to the DNS server using ssh.
2. Suspend updates to all dynamic zones: rndc freeze.

3. Edit /var/named/dynamic/example.com.

$ORIGIN openshift.example.com.
<OUTPUT_OMITTED>

openshift-worker-1 A <ip-of-worker-1>
openshift-worker-2 A <ip-of-worker-2>
o Remove the provisioner as it is replaced by openshift-worker-2.

30h

BMC

openshift-worker-<num>-

AGE

30h

30h

3m27s

57

4. Increase the SERIAL value by 1.

5. Edit /var/named/dynamic/1.0.10.1in-addr.arpa.

e The filename 1.0.10.1in-addr.arpa is the reverse of the public CIDR example
10.0.1.0/24.

6. Increase the SERIAL value by 1.

7. Enable updates to all dynamic zones and reload them: rndc thaw.

Configuring dnsmasq (Option 2)

Procedure

Append the following DNS record to the /etc/hosts file on the server hosting the dnsmasq service.

<OUTPUT_OMITTED>
<NIC2-IP> openshift-worker-1.openshift.example.com openshift-worker-1
<NIC2-IP> openshift-worker-2.openshift.example.com openshift-worker-2

0 Remove the provisioner.openshift.example.com entry as it is replaced by worker-2

Appending DHCP reservations

Configuring dhcpd (Option 1)

Procedure

1. Login to the DHCP server using ssh.
2. Edit /etc/dhcp/dhepd.hosts.

host openshift-worker-2 {
option host-name "worker-2";
hardware ethernet <NIC2-mac-address>;
option domain-search "openshift.example.com";
fixed-address <ip-address-of-NIC2>;

o Remove the provisioner as it is replaced by openshift-worker-2.

3. Restart the dhcpd service.

systemctl restart dhcpd

Configuring dnsmasq (Option 2)

Procedure

38

1. Append the following DHCP reservation to the /etc/dnsmasq.d/example.dns file on the server
hosting the dnsmasq service.

<OUTPUT_OMITTED>
dhcp-host=<NIC2-mac-address>,openshift-worker-1.openshift.example.com,<ip-of-

worker-1>

dhcp-host=<NIC2-mac-address>,openshift-worker-2.openshift.example.com,<ip-of-

worker-2>

o Remove the provisioner.openshift.example.com entry as it is replaced by
worker-2

2. Restart the dnsmasq service.

systemctl restart dnsmasq

Deploying the provisioner node as a worker node using Metal3
After you have completed the prerequisites, perform the deployment process.

Procedure

1. Power off the node using ipmitool and confirm the provisioning node is powered off.

ssh <server-with-access-to-management-net>

Use the user, password and Management net IP adddress to shutdown the system
ipmitool -I lanplus -U <user> -P <password> -H <management-server-ip> power off
Confirm the server is powered down

ipmitool -I lanplus -U <user> -P <password> -H <management-server-ip> power status
Chassis Power is off

2. Get baseb4 strings for the Out of band Management credentials. In this example, the user is root
and the password is calvin.

Use echo -ne, otherwise you will get your secrets with \n which will cause issues
Get root username in baseb4

echo -ne "root" | base64

Get root password in baseb4

echo -ne "calvin" | base64

3. Configure the BaremetalHost bmh.yaml file.

apiVersion: v1
kind: Secret
metadata:

39

name: openshift-worker-2-bmc-secret
type: Opaque
data:
username: ca2vdAo=
password: MWAwTWdtdCeK
apiVersion: metal3.io/vi1alphal
kind: BareMetalHost
metadata:
name: openshift-worker-2
spec:
online: true
bootMACAddress: <NIC1-mac-address>
bmc:
address: ipmi://<out-of-band-ip>
credentialsName: openshift-worker-2-bmc-secret

4, Create the BaremetalHost.

./oc -n openshift-machine-api create -f bmh.yaml
secret/openshift-worker-2-bmc-secret created
baremetalhost.metal3.io/openshift-worker-2 created

5. Power up and inspect the node.

./oc -n openshift-machine-api get bmh openshift-worker-2

NAME STATUS ~ PROVISIONING STATUS CONSUMER BMC

HARDWARE PROFILE ONLINE ERROR

openshift-worker-2 0K inspecting ipmi://<out-of-band-
ip> true

6. After finishing the inspection, the node is ready to be provisioned.

./oc -n openshift-machine-api get bmh openshift-worker-2

NAME STATUS ~ PROVISIONING STATUS CONSUMER BMC

HARDWARE PROFILE ONLINE ERROR

openshift-worker-2 0K ready ipmi://<out-of-band-
ip> unknown true

7. Scale the workers machineset. Previously, there were two replicas during original installation.

./oc get machineset -n openshift-machine-api
NAME DESIRED CURRENT READY AVAILABLE AGE
openshift-worker-2 0 0 21h

60

./oc -n openshift-machine-api scale machineset openshift-worker-2 --replicas=3

8. The baremetal host moves to provisioning status. This can take as long as 30 minutes. You can
follow the status from the node console.

oc -n openshift-machine-api get bmh openshift-worker-2

NAME STATUS PROVISIONING STATUS CONSUMER BMC
HARDWARE PROFILE ONLINE ERROR

openshift-worker-2 0K provisioning openshift-worker-0-65tjz
ipmi://<out-of-band-ip> unknown true

9. When the node is provisioned it moves to provisioned status.

oc -n openshift-machine-api get bmh openshift-worker-2

NAME STATUS PROVISIONING STATUS CONSUMER BMC
HARDWARE PROFILE ONLINE ERROR

openshift-worker-2 0K provisioned openshift-worker-2-65tjz
ipmi://<out-of-band-ip> unknown true

10. When the kubelet finishes initialization the node is ready for use. You can connect to the node
and run journalctl -fu kubelet to check the process.

oc get node

NAME STATUS ROLES AGE
VERSION

openshift-master-0.openshift.example.com Ready master 30h
v1.16.2

openshift-master-1.openshift.example.com Ready master 30h
v1.16.2

openshift-master-2.openshift.example.com Ready master 30h
v1.16.2

openshift-worker-0.openshift.example.com Ready worker 3m27s
v1.16.2

openshift-worker-1.openshift.example.com Ready worker 3m27s
v1.16.2

openshift-worker-2.openshift.example.com Ready worker 3m27s
v1.16.2

61

Chapter 5. Appendix

In this section of the document, extra information is provided that is outside of the regular
workflow.

5.1. Troubleshooting

Troubleshooting the installation is out of scope of the Deployment Guide. For more details on
troubleshooting deployment, refer to our Troubleshooting guide.

5.2. Creating DNS Records

Two options are documented for configuring DNS records:

* On a DNS Server (Bind)

* Using dnsmasq

5.2.1. Configuring Bind (Option 1)

Use Option 1 if access to the appropriate DNS server for the baremetal network is accessible or a
request to your network admin to create the DNS records is an option. If this is not an option, skip
this section and go to section Create DNS records using dnsmasq (Option 2).

Create a subzone with the name of the cluster that is going to be used on your domain. In our
example, the domain used is example.com and the cluster name used is openshift. Make sure to
change these according to your environment specifics.

Procedure
1. Login to the DNS server using ssh.
2. Suspend updates to all dynamic zones: rndc freeze.

3. Edit /var/named/dynamic/example.com.

$ORIGIN openshift.example.com.

$TTL 300 ;5 minutes

@ IN SOA dnsl.example.com. hostmaster.example.com. (
2001062501 ; serial

21600 ; refresh after 6 hours
3600 ; retry after 1 hour
604800 ; expire after 1 week

86400) ; minimum TTL of 1 day

.
I

api A <api-ip>

ns1 A <dns-vip-ip>

$ORIGIN apps.openshift.example.com.

* A <wildcard-ingress-1b-ip>

$ORIGIN openshift.example.com.

62

../latest/Troubleshooting

<NIC2-ip-of-provision>

<NIC2-ip-of-openshift-master-0>
<NIC2-ip-of-openshift-master-1>
<NIC2-ip-of-openshift-master-2>
<NIC2-ip-of-openshift-worker-0>
<NIC2-ip-of-openshift-worker-1>

provisioner

openshift-master-0
openshift-master-1
openshift-master-2
openshift-worker-0
openshift-worker-1

> = = = = >

4. Increase the serial value by 1.

5. Edit /var/named/dynamic/1.0.10.1in-addr.arpa

$ORIGIN 1.0.10.1in-addr.arpa.

$TTL 300

@ IN SOA dnsl.example.com. hostmaster.example.com. (
2001062501 ; serial

21600 ; refresh after 6 hours

3600 ; retry after 1 hour

604800 ; expire after 1 week

86400) ; minimum TTL of 1 day
126 IN PTR provisioner.openshift.example.com.
127 IN PTR openshift-master-0.openshift.example.com.
128 IN PTR openshift-master-1.openshift.example.com.
129 IN PTR openshift-master-2.openshift.example.com.
130 IN PTR openshift-worker-0.openshift.example.com.
131 IN PTR openshift-worker-1.openshift.example.com.
132 IN PTR api.openshift.example.com.
133 IN PTR ns1.openshift.example.com.

o In this example, the IP addresses 10.0.1.126-133 are pointed to the
corresponding fully qualified domain name.

o The filename 1.0.10.1in-addr.arpa is the reverse of the public CIDR example
10.0.1.0/24.

6. Increase the serial value by 1.

7. Enable updates to all dynamic zones and reload them: rndc thaw.

5.2.2. Configuring dnsmasq (Option 2)

To create DNS records, open the /etc/hosts file and add the NIC2 (baremetal net) IP followed by the
hostname. In our example, the domain used is example.com and the cluster name used is openshift.
Make sure to change these according to your environment specifics.

Procedure

1. Edit /etc/hosts and add the NIC2 (baremetal net) IP followed by the hostname.

63

cat /etc/hosts

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
0 localhost localhost.localdomain localhost6 localhost6.localdomainb
<NIC2-IP> provisioner.openshift.example.com provisioner

<NIC2-IP> openshift-master-0.openshift.example.com openshift-master-0
<NIC2-IP> openshift-master-1.openshift.example.com openshift-master-1
<NIC2-IP> openshift-master-2.openshift.example.com openshift-master-2
<NIC2-IP> openshift-worker-@.openshift.example.com openshift-worker-0
<NIC2-IP> openshift-worker-1.openshift.example.com openshift-worker-1

<API-IP> api.openshift.example.com api

<DNS-VIP-IP> ns1.openshift.example.com ns1

2. Open the appropriate firewalld DNS service and reload the rules.

systemctl restart firewalld
firewall-cmd --add-service=dns --permanent
firewall-cmd --reload

5.3. Creating DHCP reservations

Two options are documented for configuring DHCP:

* On dhcpd (Option 1)
» Using dnsmasq (Option 2)

5.3.1. Configuring dhcpd (Option 1)

Use Option 1 if access to the appropriate DHCP server for the baremetal network is accessible or a
request to your network admin to create the DHCP reservations is an option. If this is not an option,
skip this section and go to section Create DHCP records using dnsmasq (Option 2).

1. Login to the DHCP server using ssh.
2. Edit /etc/dhcp/dhepd.hosts

host provisioner {
option host-name "provisioner";
hardware ethernet <mac-address-of-NIC2>;
option domain-search "openshift.example.com";
fixed-address <ip-address-of-NIC2>;

host openshift-master-0 {
option host-name "openshift-master-0";
hardware ethernet <mac-address-of-NIC2>;
option domain-search "openshift.example.com";
fixed-address <ip-address-of-NIC2>;

64

host openshift-master-1 {
option host-name "openshift-master-1";
hardware ethernet <mac-address-of-NIC2>;
option domain-search "openshift.example.com";
fixed-address <ip-address-of-NIC2>;

host openshift-master-2 {
option host-name "openshift-master-2";
hardware ethernet <mac-address-of-NIC2>;
option domain-search "openshift.example.com";
fixed-address <ip-address-of-NIC2>;

host openshift-worker-0 {
option host-name "openshift-worker-0";
hardware ethernet <mac-address-of-NIC2>;
option domain-search "openshift.example.com";
fixed-address <ip-address-of-NIC2>;

host openshift-worker-1 {
option host-name "openshift-worker-1";
hardware ethernet <mac-address-of-NIC2>;

option domain-search "openshift.example.com";
fixed-address <ip-address-of-NIC2>;

3. Restart the dhcpd service.

systemctl restart dhcpd

5.3.2. Configuring dnsmasq (Option 2)
Set up dnsmasq on a server that can access the baremetal network.

Procedure

1. Install dnsmasq.
dnf install -y dnsmasq
2. Change to the /etc/dnsmasq.d directory.

cd /etc/dnsmasq.d

3. Create a file that reflects your OpenShift cluster appended by .dns.

65

touch <filename>.dns

4. Open the appropriate firewalld DHCP service.

systemctl restart firewalld
firewall-cmd --add-service=dhcp --permanent
firewall-cmd --reload

5. Define DNS configuration file

66

IPv4

Here is an example of the .dns file for IPv4.

domain-needed

bind-dynamic

bogus-priv

domain=openshift.example.com
dhcp-range=<baremetal-net-starting-ip,baremetal-net-ending-ip>
#tdhcp-range=10.0.1.4,10.0.14
dhcp-option=3,<baremetal-net-gateway-ip>
#dhcp-option=3,10.0.1.254
resolv-file=/etc/resolv.conf.upstream
interface=<nic-with-access-to-baremetal-net>
#interface=em?
server=<ip-of-existing-server-on-baremetal-net>

#Wildcard for apps -- make changes to cluster-name (openshift) and domain
(example.com)
address=/.apps.openshift.example.com/<wildcard-ingress-1b-ip>

#Static IPs for Masters
dhcp-host=<NIC2-mac-address>,provisioner.openshift.example.com,<ip-of-provisioner>
dhcp-host=<NIC2-mac-address>,openshift-master-0.openshift.example.com,<ip-of-
openshift-master-0>
dhcp-host=<NIC2-mac-address>,openshift-master-1.openshift.example.com,<ip-of-
openshift-master-1>
dhcp-host=<NIC2-mac-address>,openshift-master-2.openshift.example.com,<ip-of-
openshift-master-2>
dhcp-host=<NIC2-mac-address>,openshift-worker-0.openshift.example.com,<ip-of-
openshift-worker-0>
dhcp-host=<NIC2-mac-address>,openshift-worker-1.openshift.example.com,<ip-of-
openshift-worker-1>

IPv6

Here is an example of the .dns file for IPv6.

strict-order

bind-dynamic

bogus-priv

dhcp-authoritative
dhcp-range=baremetal,<baremetal-IPv6-dhcp-range-start>,<baremetal-IPv6-dhcp-range-
end>,<range-prefix>

dhcp-option=baremetal,option6:dns-server, [<IPv6-DNS-Server>]

resolv-file=/etc/resolv.conf.upstream
except-interface=1o

dhcp-lease-max=81

log-dhcp

domain=openshift.example.com,<baremetal-IPv6-cidr>,local

static host-records
address=/.apps.openshift.example.com/<wildcard-ingress-1b-ip>
host-record=api.openshift.example.com,<api-ip>
host-record=ns1.openshift.example.com,<dns-ip>
host-record=openshift-master-0.openshift.example.com,<ip-of-openshift-master-0>
host-record=openshift-master-1.openshift.example.com,<ip-of-openshift-master-1>
host-record=openshift-master-2.openshift.example.com,<ip-of-openshift-master-1>
Registry

host-record=registry.openshift.example.com,<ip-of-registry-server>

#Static IPs for Masters
dhcp-host=<baremetal-nic-duid>,openshift-master-0.openshift.example.com,<ip-of-
openshift-master-0>
dhcp-host=<baremetal-nic-duid>,openshift-master-1.openshift.example.com,<ip-of-
openshift-master-1>
dhcp-host=<baremetal-nic-duid>,openshift-master-2.openshift.example.com,<ip-of-
openshift-master-2>

6. Create the resolv.conf.upstream file to provide DNS fowarding to an existing DNS server for
resolution to the outside world.

search <domain.com>
nameserver <ip-of-my-existing-dns-nameserver>

7. Restart the dnsmasq service.

systemctl restart dnsmasq

8. Verify the dnsmasq service is running.

67

68

systemctl status dnsmasq

	Deploying Installer Provisioned Infrastructure (IPI) of OpenShift on Bare Metal - 4.7
	Chapter 1. Overview
	Chapter 2. Prerequisites
	2.1. Node requirements
	2.2. Firmware requirements for installing with virtual media
	2.3. Network requirements
	2.4. Configuring nodes
	2.5. Out-of-band management
	2.6. Required data for installation
	2.7. Validation checklist for nodes

	Chapter 3. Setting up the environment for an OpenShift installation
	3.1. Installing RHEL on the provisioner node
	3.2. Preparing the provisioner node for OpenShift Container Platform installation
	3.3. Retrieving the OpenShift Container Platform installer (GA Release)
	3.4. Extracting the OpenShift Container Platform installer (GA Release)
	3.5. Creating an RHCOS images cache (optional)
	3.6. Configuration files
	3.6.1. Configuring the install-config.yaml file
	3.6.2. Setting proxy settings within the install-config.yaml file (optional)
	3.6.3. Modifying the install-config.yaml file for no provisioning network (optional)
	3.6.4. Modifying the install-config.yaml file for dual-stack network (optional)
	3.6.5. Additional install-config parameters
	3.6.6. BMC addressing
	BMC addressing for Dell iDRAC
	BMC addressing for HPE iLO
	BMC addressing for KVM with sushy-tools Redfish emulator

	3.6.7. Root device hints
	3.6.8. Creating the OpenShift Container Platform manifests

	3.7. Creating a disconnected registry (optional)
	3.7.1. Preparing the registry node to host the mirrored registry (optional)
	3.7.2. Generating the self-signed certificate (optional)
	3.7.3. Creating the registry podman container (optional)
	3.7.4. Copy and update the pull-secret (optional)
	3.7.5. Mirroring the repository (optional)
	3.7.6. Modify the install-config.yaml file to use the disconnected registry (optional)

	3.8. Deploying routers on worker nodes
	3.9. Validation checklist for installation
	3.10. Deploying the cluster via the OpenShift Container Platform installer
	3.11. Following the installation
	3.12. Verifying static IP address configuration

	Chapter 4. Day 2 operations
	4.1. Accessing the web console
	4.2. Backing up the cluster configuration
	4.3. Expanding the cluster
	4.3.1. Preparing the bare metal node
	4.3.2. Preparing to deploy with Virtual Media on the baremetal network
	Diagnosing a duplicate MAC address when provisioning a new host in the cluster

	4.3.3. Provisioning the bare metal node
	4.3.4. Preparing the provisioner node to be deployed as a worker node
	4.3.5. Adding a worker node to an existing cluster
	Appending DNS records
	Configuring Bind (Option 1)
	Configuring dnsmasq (Option 2)

	Appending DHCP reservations
	Configuring dhcpd (Option 1)
	Configuring dnsmasq (Option 2)

	Deploying the provisioner node as a worker node using Metal3

	Chapter 5. Appendix
	5.1. Troubleshooting
	5.2. Creating DNS Records
	5.2.1. Configuring Bind (Option 1)
	5.2.2. Configuring dnsmasq (Option 2)

	5.3. Creating DHCP reservations
	5.3.1. Configuring dhcpd (Option 1)
	5.3.2. Configuring dnsmasq (Option 2)

