
Troubleshooting Guide for IPI
Installation

Deployment Integration Team

1. Troubleshooting the installer workflow. 2

2. Troubleshooting install-config.yaml . 5

3. Bootstrap VM issues . 6

3.1. Bootstrap VM cannot boot up the cluster nodes . 7

3.2. Inspecting logs . 8

4. Ironic Bootstrap issues . 10

5. Cluster nodes will not PXE boot . 13

6. The API is not accessible. 14

7. Cleaning up previous installations. 16

8. Issues with creating the registry . 17

9. Miscellaneous issues . 18

9.1. Addressing the runtime network not ready error . 18

9.2. Cluster nodes not getting the correct IPv6 address over DHCP. 19

9.3. Cluster nodes not getting the correct hostname over DHCP . 19

9.4. Routes do not reach endpoints . 21

9.5. Failed Ignition during Firstboot . 22

9.6. NTP out of sync . 23

10. Reviewing the installation . 26


Download the PDF version of this document or visit https://openshift-kni.github.io/
baremetal-deploy/

While attempting to deploy Installer Provisioned Infrastructure (IPI) of OpenShift on Bare Metal
(BM), you may run into a situation where you need to troubleshoot your environment. This
document provides troubleshooting guidance and tips in solving common issues that may arise.

1

Troubleshooting.pdf
https://openshift-kni.github.io/baremetal-deploy/
https://openshift-kni.github.io/baremetal-deploy/

Chapter 1. Troubleshooting the installer
workflow
Prior to troubleshooting the installation environment, it is critical to understand the overall flow of
the IPI installation on bare metal. The diagrams below provide a troubleshooting flow with a step-
by-step breakdown for the environment.

Workflow 1 of 4 illustrates a troubleshooting workflow when the install-config.yaml file has errors
or the Red Hat Enterprise Linux CoreOS (RHCOS) images are inaccessible. Troubleshooting
suggestions can be found at

Troubleshooting `install-config.yaml.

2

Workflow 2 of 4 illustrates a troubleshooting workflow for bootstrap VM issues, bootstrap VMs that
cannot boot up the cluster nodes, and inspecting logs.

3

Workflow 3 of 4 illustrates a troubleshooting workflow for cluster nodes that will not PXE boot.

Workflow 4 of 4 illustrates a troubleshooting workflow from a non-accessible API to a validated
installation.

4

Chapter 2. Troubleshooting install-
config.yaml
The install-config.yaml configuration file represents all of the nodes that are part of the OpenShift
Container Platform cluster. The file contains the necessary options consisting of but not limited to
apiVersion, baseDomain, imageContentSources (OpenShift 4.13 and below) or imageDigestSources
(OpenShirt 4.14 and above), and virtual IP addresses. If errors occur early in the deployment of the
OpenShift Container Platform cluster, the errors are likely in the install-config.yaml configuration
file.

Procedure

1. Use the guidelines in YAML-tips.

2. Verify the YAML syntax is correct using syntax-check.

3. Verify the Red Hat Enterprise Linux CoreOS (RHCOS) QEMU images are properly defined and
accessible via the URL provided in the install-config.yaml. For example:

$ curl -s -o /dev/null -I -w "%{http_code}\n"
http://webserver.example.com:8080/rhcos-44.81.202004250133-0-
qemu.x86_64.qcow2.gz?sha256=7d884b46ee54fe87bbc3893bf2aa99af3b2d31f2e19ab5529c60636
fbd0f1ce7

If the output is 200, there is a valid response from the webserver storing the bootstrap VM
image.

5

https://www.redhat.com/sysadmin/yaml-tips
http://www.yamllint.com/

Chapter 3. Bootstrap VM issues
The OpenShift Container Platform installer spawns a bootstrap node virtual machine, which
handles provisioning the OpenShift Container Platform cluster nodes.

Procedure

1. About 10 to 15 minutes after triggering the installer, check to ensure the bootstrap VM is
operational using the virsh command:

$ sudo virsh list

 Id Name State
 --
 12 openshift-xf6fq-bootstrap running


The name of the bootstrap VM is always the cluster name followed by a
random set of characters and ending in the word "bootstrap."

If the bootstrap VM is not running after 10-15 minutes, troubleshoot why it is not running.
Possible issues include:

2. Verify libvirtd is running on the system:

$ systemctl status libvirtd

● libvirtd.service - Virtualization daemon
 Loaded: loaded (/usr/lib/systemd/system/libvirtd.service; enabled; vendor
preset: enabled)
 Active: active (running) since Tue 2020-03-03 21:21:07 UTC; 3 weeks 5 days ago
 Docs: man:libvirtd(8)
 https://libvirt.org
 Main PID: 9850 (libvirtd)
 Tasks: 20 (limit: 32768)
 Memory: 74.8M
 CGroup: /system.slice/libvirtd.service
 ├─ 9850 /usr/sbin/libvirtd

If the bootstrap VM is operational, log into it.

3. Use the virsh console command to find the IP address of the bootstrap VM:

$ sudo virsh console example.com

6

Connected to domain example.com
Escape character is ^]

Red Hat Enterprise Linux CoreOS 43.81.202001142154.0 (Ootpa) 4.3
SSH host key: SHA256:BRWJktXZgQQRY5zjuAV0IKZ4WM7i4TiUyMVanqu9Pqg (ED25519)
SSH host key: SHA256:7+iKGA7VtG5szmk2jB5gl/5EZ+SNcJ3a2g23o0lnIio (ECDSA)
SSH host key: SHA256:DH5VWhvhvagOTaLsYiVNse9ca+ZSW/30OOMed8rIGOc (RSA)
ens3: fd35:919d:4042:2:c7ed:9a9f:a9ec:7
ens4: 172.22.0.2 fe80::1d05:e52e:be5d:263f
localhost login:


When deploying a OpenShift Container Platform cluster without the
provisioning network, you must use a public IP address and not a private IP
address like 172.22.0.2.

4. Once you obtain the IP address, log in to the bootstrap VM using the ssh command:


In the console output of the previous step, you can use the IPv6 IP address
provided by ens3 or the IPv4 IP provided by ens4.

$ ssh core@172.22.0.2

If you are not successful logging in to the bootstrap VM, you have likely encountered one of the
following scenarios:

• You cannot reach the 172.22.0.0/24 network. Verify network connectivity on the provisioner
host specifically around the provisioning network bridge. This will not be the issue if you are
not using the provisioning network.

• You cannot reach the bootstrap VM via the public network. When attempting to SSH via
baremetal network, verify connectivity on the provisioner host specifically around the baremetal
network bridge.

• You encountered Permission denied (publickey,password,keyboard-interactive). When
attempting to access the bootstrap VM, a Permission denied error might occur. Verify that the
SSH key for the user attempting to log into the VM is set within the install-config.yaml file.

3.1. Bootstrap VM cannot boot up the cluster nodes
During the deployment, it is possible for the bootstrap VM to fail to boot the cluster nodes, which
prevents the VM from provisioning the nodes with the RHCOS image. This scenario can arise due to:

• A problem with the install-config.yaml file.

• Issues with out-of-band network access via the baremetal network.

To verify the issue, there are three containers related to ironic:

7

• ironic-api

• ironic-conductor

• ironic-inspector

Procedure

1. Log in to the bootstrap VM:

$ ssh core@172.22.0.2

2. To check the container logs, execute the following:

[core@localhost ~]$ sudo podman logs -f <container-name>

Replace <container-name> with one of ironic-api, ironic-conductor, or ironic-inspector. If you
encounter an issue where the control plane nodes are not booting up via PXE, check the ironic-
conductor pod. The ironic-conductor pod contains the most detail about the attempt to boot the
cluster nodes, because it attempts to log in to the node over IPMI.

Potential reason

The cluster nodes might be in the ON state when deployment started.

Solution

Power off the OpenShift Container Platform cluster nodes before you begin the installation over
IPMI:

$ ipmitool -I lanplus -U root -P <password> -H <out-of-band-ip> power off

3.2. Inspecting logs
When experiencing issues downloading or accessing the RHCOS images, first verify that the URL is
correct in the install-config.yaml configuration file.

Example of internal webserver hosting RHCOS images

bootstrapOSImage: http://<ip:port>/rhcos-43.81.202001142154.0-
qemu.x86_64.qcow2.gz?sha256=9d999f55ff1d44f7ed7c106508e5deecd04dc3c06095d34d36bf1cd127
837e0c
clusterOSImage: http://<ip:port>/rhcos-43.81.202001142154.0-
openstack.x86_64.qcow2.gz?sha256=a1bda656fa0892f7b936fdc6b6a6086bddaed5dafacedcd7a1e81
1abb78fe3b0

The ipa-downloader and coreos-downloader containers download resources from a webserver or the
external quay.io registry, whichever the install-config.yaml configuration file specifies. Verify the
following two containers are up and running and inspect their logs as needed:

8

https://quay.io

• ipa-downloader

• coreos-downloader

Procedure

1. Log in to the bootstrap VM:

$ ssh core@172.22.0.2

2. Check the status of the ipa-downloader and coreos-downloader containers within the bootstrap
VM:

[core@localhost ~]$ podman logs -f ipa-downloader

[core@localhost ~]$ podman logs -f coreos-downloader

If the bootstrap VM cannot access the URL to the images, use the curl command to verify that
the VM can access the images.

3. To inspect the bootkube logs that indicate if all the containers launched during the deployment
phase, execute the following:

[core@localhost ~]$ journalctl -xe

[core@localhost ~]$ journalctl -b -f -u bootkube.service

4. Verify all the pods, including dnsmasq, mariadb, httpd, and ironic, are running:

[core@localhost ~]$ sudo podman ps

5. If there are issues with the pods, check the logs of the containers with issues. To check the log of
the ironic-api, execute the following:

[core@localhost ~]$ sudo podman logs <ironic-api>

9

Chapter 4. Ironic Bootstrap issues
The OpenShift Container Platform installer spawns a bootstrap node virtual machine, which
handles provisioning the OpenShift Container Platform cluster nodes. The cluster nodes are
powered on, introspected and finally provisioned using Ironic.

Sometimes you might need to connect to the Ironic service running on the bootstrap node virtual
machine to troubleshoot issues related to Ironic.

Procedure

1. About 10 to 15 minutes after triggering the installer, check to ensure the bootstrap VM is
operational using the virsh command:

[kni@provisioner ~]$ sudo virsh list

 Id Name State
 --
 12 openshift-xf6fq-bootstrap running

2. Use the virsh console command to find the IP address of the bootstrap VM:

[kni@provisioner ~]$ sudo virsh console openshift-xf6fq-bootstrap

Connected to domain openshift-xf6fq-bootstrap
Escape character is ^]

Red Hat Enterprise Linux CoreOS 43.81.202001142154.0 (Ootpa) 4.3
SSH host key: SHA256:BRWJktXZgQQRY5zjuAV0IKZ4WM7i4TiUyMVanqu9Pqg (ED25519)
SSH host key: SHA256:7+iKGA7VtG5szmk2jB5gl/5EZ+SNcJ3a2g23o0lnIio (ECDSA)
SSH host key: SHA256:DH5VWhvhvagOTaLsYiVNse9ca+ZSW/30OOMed8rIGOc (RSA)
ens3: fd35:919d:4042:2:c7ed:9a9f:a9ec:7
ens4: 172.22.0.2 fe80::1d05:e52e:be5d:263f
localhost login:

3. Once you obtain the IP address, log in to the bootstrap VM using the ssh command:


In the console output of the previous step, the IPv6 IP provided by ens3 or the
IPv4 IP provided by ens4 can be used.

[kni@provisioner ~]$ ssh core@172.22.0.2

4. Make sure Ironic containers are running:

10

[core@localhost ~]$ sudo podman ps | grep ironic
90251a35d1e2 quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:a5603d959546a8293deaee66332da4fa3cb96bcd04c26967070c247085ca7203
2 minutes ago Up 2 minutes ago ironic-api
168e712c9996 quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:c6af62509b3d66effe8e16c81e42e75e124ccb5770f82efb010ecc3ebadc48b8
2 minutes ago Up 2 minutes ago ironic-inspector
025f8247bfb0 quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:a5603d959546a8293deaee66332da4fa3cb96bcd04c26967070c247085ca7203
2 minutes ago Up 2 minutes ago ironic-conductor

5. Get the value for the bootstrapProvisioningIp property from your install-config.yaml.

6. Create a clouds.yaml file:

clouds:
 metal3-bootstrap:
 auth_type: none
 baremetal_endpoint_override: http://<bootstrapProvisioningIp>:6385
 baremetal_introspection_endpoint_override:
http://<bootstrapProvisioningIp>:5050


Make sure in the file above you change <bootstrapProvisioningIp> with the
value from your install-config.yaml file.

7. Run the ironic-client on the bootstrap VM using podman:

[core@localhost ~]$ podman run -ti --rm --entrypoint /bin/bash -v
/path/to/clouds.yaml:/clouds.yaml -e OS_CLOUD=metal3-bootstrap quay.io/metal3-
io/ironic-client

8. Once you’re in the container, run the following command to see the status of the nodes on
Ironic:

[root@1facad6bccff /]# baremetal node list

The expected states for the nodes are clean-wait → available → deploying → wait call-back →
active.

◦ clean-wait: The IPA (Ironic Python Agent) will clean the node main disk and write RHCOS to
it. After that will report the node status back to Ironic.

◦ available: The node has been introspected and it’s ready to be provisioned.

◦ deploying: The node is being provisioned with RHCOS + the required Ignition configs.

◦ wait call-back: The node is deployed and Ironic is waiting for the node to finish everything

11

before marking the node as active.

◦ active: The node is fully provisioned from an Ironic perspective.

If you are not getting any output, you have likely encountered of the following scenarios:

• You cannot reach the bootstrapProvisioningIp from the bootstrap VM.

• The Ironic conductor was not able to power on and configure the nodes to boot with the IPA
image.

• The machine running the openshift-install binary cannot access the bootstrapProvisioningIp
on port 6385.

12

Chapter 5. Cluster nodes will not PXE boot
When OpenShift Container Platform cluster nodes will not PXE boot, execute the following checks
on the cluster nodes that will not PXE boot. This procedure does not apply when installing a
OpenShift Container Platform cluster without the provisioning network.

Procedure

1. Check the network connectivity to the provisioning network.

2. Ensure PXE is enabled on the NIC for the provisioning network and PXE is disabled for all other
NICs.

3. Verify that the install-config.yaml configuration file has the proper hardware profile and boot
MAC address for the NIC connected to the provisioning network. For example:

Master node settings

bootMACAddress: 24:6E:96:1B:96:90 # MAC of bootable provisioning NIC
hardwareProfile: default #master node settings

Worker node settings

bootMACAddress: 24:6E:96:1B:96:90 # MAC of bootable provisioning NIC
hardwareProfile: unknown #worker node settings

13

Chapter 6. The API is not accessible
When the cluster is running and clients cannot access the API, domain name resolution issues
might impede access to the API.

Procedure

1. Hostname Resolution: Check the cluster nodes to ensure they have a fully qualified domain
name, and not just localhost.localdomain. For example:

$ hostname

If a hostname is not set, set the correct hostname. For example:

$ hostnamectl set-hostname <hostname>

2. Incorrect Name Resolution: Ensure that each node has the correct name resolution in the DNS
server using dig and nslookup. For example:

$ dig api.<cluster-name>.example.com

; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el8 <<>> api.<cluster-name>.example.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 37551
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 866929d2f8e8563582af23f05ec44203d313e50948d43f60 (good)
;; QUESTION SECTION:
;api.<cluster-name>.example.com. IN A

;; ANSWER SECTION:
api.<cluster-name>.example.com. 10800 IN A 10.19.13.86

;; AUTHORITY SECTION:
<cluster-name>.example.com. 10800 IN NS <cluster-name>.example.com.

;; ADDITIONAL SECTION:
<cluster-name>.example.com. 10800 IN A 10.19.14.247

;; Query time: 0 msec
;; SERVER: 10.19.14.247#53(10.19.14.247)
;; WHEN: Tue May 19 20:30:59 UTC 2020
;; MSG SIZE rcvd: 140

14

The output in the foregoing example indicates that the appropriate IP address for the
api.<cluster-name>.example.com VIP is 10.19.13.86. This IP address should reside on the
baremetal network.

15

Chapter 7. Cleaning up previous
installations
In the event of a previous failed deployment, remove the artifacts from the failed attempt before
attempting to deploy OpenShift Container Platform again.

Procedure

1. Power off all bare metal nodes prior to installing the OpenShift Container Platform cluster:

$ ipmitool -I lanplus -U <user> -P <password> -H <management-server-ip> power off

2. Remove all old bootstrap resources if any are left over from a previous deployment attempt:

for i in $(sudo virsh list | tail -n +3 | grep bootstrap | awk {'print $2'});
do
 sudo virsh destroy $i;
 sudo virsh undefine $i;
 sudo virsh vol-delete $i --pool $i;
 sudo virsh vol-delete $i.ign --pool $i;
 sudo virsh pool-destroy $i;
 sudo virsh pool-undefine $i;
done

3. Remove the following from the clusterconfigs directory to prevent Terraform from failing:

$ rm -rf ~/clusterconfigs/auth ~/clusterconfigs/terraform* ~/clusterconfigs/tls
~/clusterconfigs/metadata.json

16

Chapter 8. Issues with creating the registry
When creating a disconnected registry, you might encounter a "User Not Authorized" error when
attempting to mirror the registry. This error might occur if you fail to append the new
authentication to the existing pull-secret.txt file.

Procedure

1. Check to ensure authentication is successful:

[user@registry ~]$ /usr/local/bin/oc adm release mirror \
 -a pull-secret-update.json
 --from=$UPSTREAM_REPO \
 --to-release-image=$LOCAL_REG/$LOCAL_REPO:${VERSION} \
 --to=$LOCAL_REG/$LOCAL_REPO



Example output of the variables used to mirror the install images:

UPSTREAM_REPO=${RELEASE_IMAGE}
LOCAL_REG=<registry_FQDN>:<registry_port>
LOCAL_REPO='ocp4/openshift4'

The values of RELEASE_IMAGE and VERSION were set during the Retrieving
OpenShift Installer step of the Setting up the environment for an OpenShift
installation section.

2. After mirroring the registry, confirm that you can access it in your disconnected environment:

$ curl -k -u <user>:<password> https://registry.example.com:<registry-
port>/v2/_catalog
{"repositories":["<Repo-Name>"]}

17

Chapter 9. Miscellaneous issues

9.1. Addressing the runtime network not ready error
After the deployment of a cluster you might receive the following error:

`runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady
message:Network plugin returns error: Missing CNI default network`

The Cluster Network Operator is responsible for deploying the networking components in response
to a special object created by the installer. It runs very early in the installation process, after the
control plane (master) nodes have come up, but before the bootstrap control plane has been torn
down. It can be indicative of more subtle installer issues, such as long delays in bringing up control
plane (master) nodes or issues with apiserver communication.

Procedure

1. Inspect the pods in the openshift-network-operator namespace:

$ oc get all -n openshift-network-operator

NAME READY STATUS RESTARTS AGE
pod/network-operator-69dfd7b577-bg89v 0/1 ContainerCreating 0 149m

2. On the provisioner node, determine that the network configuration exists:

$ kubectl get network.config.openshift.io cluster -oyaml

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 serviceNetwork:
 - 172.30.0.0/16
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 networkType: OpenShiftSDN

If it does not exist, the installer did not create it. To determine why the installer did not create it,
execute the following:

18

$ openshift-install create manifests

3. Check that the network-operator is running:

$ kubectl -n openshift-network-operator get pods

4. Retrieve the logs:

$ kubectl -n openshift-network-operator logs -l "name=network-operator"

On high availability clusters with three or more control plane (master) nodes, the Operator will
perform leader election and all other Operators will sleep. For additional details, see
Troubleshooting.

9.2. Cluster nodes not getting the correct IPv6 address
over DHCP
If the cluster nodes are not getting the correct IPv6 address over DHCP, check the following:

1. Ensure the reserved IPv6 addresses reside outside the DHCP range.

2. In the IP address reservation on the DHCP server, ensure the reservation specifies the correct
DHCP Unique Identifier (DUID). For example:

This is a dnsmasq dhcp reservation, 'id:00:03:00:01' is the client id and
'18:db:f2:8c:d5:9f' is the MAC Address for the NIC
id:00:03:00:01:18:db:f2:8c:d5:9f,openshift-master-1,[2620:52:0:1302::6]

3. Ensure that route announcements are working.

4. Ensure that the DHCP server is listening on the required interfaces serving the IP address
ranges.

9.3. Cluster nodes not getting the correct hostname
over DHCP
During IPv6 deployment, cluster nodes must get their hostname over DHCP. Sometimes the
NetworkManager does not assign the hostname immediately. A control plane (master) node might
report an error such as:

Failed Units: 2
 NetworkManager-wait-online.service
 nodeip-configuration.service

19

https://github.com/openshift/installer/blob/master/docs/user/troubleshooting.md

This error indicates that the cluster node likely booted without first receiving a hostname from the
DHCP server, which causes kubelet to boot with a localhost.localdomain hostname. To address the
error, force the node to renew the hostname.

Procedure

1. Retrieve the hostname:

[core@master-X ~]$ hostname

If the hostname is localhost, proceed with the following steps.

 Where X is the master node number.

2. Force the cluster node to renew the DHCP lease:

[core@master-X ~]$ sudo nmcli con up "<bare-metal-nic>"

Replace <bare-metal-nic> with the wired connection corresponding to the baremetal network.

3. Check hostname again:

[core@master-X ~]$ hostname

4. If the hostname is still localhost.localdomain, restart NetworkManager:

[core@master-X ~]$ sudo systemctl restart NetworkManager

5. If the hostname is still localhost.localdomain, wait a few minutes and check again. If the
hostname remains localhost.localdomain, repeat the previous steps.

6. Restart the nodeip-configuration service:

[core@master-X ~]$ sudo systemctl restart nodeip-configuration.service

This service will reconfigure the kubelet service with the correct hostname references.

7. Reload the unit files definition since the kubelet changed in the previous step:

[core@master-X ~]$ sudo systemctl daemon-reload

8. Restart the kubelet service:

[core@master-X ~]$ sudo systemctl restart kubelet.service

20

9. Ensure kubelet booted with the correct hostname:

[core@master-X ~]$ sudo journalctl -fu kubelet.service

If the cluster node is not getting the correct hostname over DHCP after the cluster is up and
running, such as during a reboot, the cluster will have a pending csr. Do not approve a csr, or other
issues might arise.

Addressing a csr

1. Get CSRs on the cluster:

$ oc get csr

2. Verify if a pending csr contains Subject Name: localhost.localdomain:

$ oc get csr <pending_csr> -o jsonpath='{.spec.request}' | base64 -d | openssl req
-noout -text

3. Remove any csr that contains Subject Name: localhost.localdomain:

$ oc delete csr <wrong_csr>

9.4. Routes do not reach endpoints
During the installation process, it is possible to encounter a Virtual Router Redundancy Protocol
(VRRP) conflict. This conflict might occur if a previously used OpenShift Container Platform node
that was once part of a cluster deployment using a specific cluster name is still running but not part
of the current OpenShift Container Platform cluster deployment using that same cluster name. For
example, a cluster was deployed using the cluster name openshift, deploying three control plane
(master) nodes and three worker nodes. Later, a separate install uses the same cluster name
openshift, but this redeployment only installed three control plane (master) nodes, leaving the
three worker nodes from a previous deployment in an ON state. This might cause a Virtual Router
Identifier (VRID) conflict and a VRRP conflict.

1. Get the route:

$ oc get route oauth-openshift

2. Check the service endpoint:

$ oc get svc oauth-openshift

21

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
oauth-openshift ClusterIP 172.30.19.162 <none> 443/TCP 59m

3. Attempt to reach the service from a control plane (master) node:

[core@master0 ~]$ curl -k https://172.30.19.162

{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {
 },
 "status": "Failure",
 "message": "forbidden: User \"system:anonymous\" cannot get path \"/\"",
 "reason": "Forbidden",
 "details": {
 },
 "code": 403

4. Identify the authentication-operator errors from the provisioner node:

$ oc logs deployment/authentication-operator -n openshift-authentication-operator

Event(v1.ObjectReference{Kind:"Deployment", Namespace:"openshift-authentication-
operator", Name:"authentication-operator", UID:"225c5bd5-b368-439b-9155-
5fd3c0459d98", APIVersion:"apps/v1", ResourceVersion:"", FieldPath:""}): type:
'Normal' reason: 'OperatorStatusChanged' Status for clusteroperator/authentication
changed: Degraded message changed from "IngressStateEndpointsDegraded: All 2
endpoints for oauth-server are reporting"

Solution

1. Ensure that the cluster name for every deployment is unique, ensuring no conflict.

2. Turn off all the rogue nodes which are not part of the cluster deployment that are using the
same cluster name. Otherwise, the authentication pod of the OpenShift Container Platform
cluster might never start successfully.

9.5. Failed Ignition during Firstboot
During the Firstboot, the Ignition configuration may fail.

Procedure

1. Connect to the node where the Ignition configuration failed:

22

Failed Units: 1
 machine-config-daemon-firstboot.service

2. Restart the machine-config-daemon-firstboot service:

[core@worker-X ~]$ sudo systemctl restart machine-config-daemon-firstboot.service

9.6. NTP out of sync
The deployment of OpenShift Container Platform clusters depends on NTP synchronized clocks
among the cluster nodes. Without synchronized clocks, the deployment may fail due to clock drift if
the time difference is greater than two seconds.

Procedure

1. Check for differences in the AGE of the cluster nodes. For example:

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0.cloud.example.com Ready master 145m v1.16.2
master-1.cloud.example.com Ready master 135m v1.16.2
master-2.cloud.example.com Ready master 145m v1.16.2
worker-2.cloud.example.com Ready worker 100m v1.16.2

2. Check for inconsistent timing delays due to clock drift. For example:

$ oc get bmh -n openshift-machine-api

master-1 error registering master-1 ipmi://<out-of-band-ip>

$ sudo timedatectl

 Local time: Tue 2020-03-10 18:20:02 UTC
 Universal time: Tue 2020-03-10 18:20:02 UTC
 RTC time: Tue 2020-03-10 18:36:53
 Time zone: UTC (UTC, +0000)
System clock synchronized: no
 NTP service: active
 RTC in local TZ: no

23

Addressing clock drift in existing clusters

1. Create a chrony.conf file and encode it as base64 string. For example:

$ cat << EOF | base 64
server <NTP-server> iburst①
stratumweight 0
driftfile /var/lib/chrony/drift
rtcsync
makestep 10 3
bindcmdaddress 127.0.0.1
bindcmdaddress ::1
keyfile /etc/chrony.keys
commandkey 1
generatecommandkey
noclientlog
logchange 0.5
logdir /var/log/chrony
EOF

① Replace <NTP-server> with the IP address of the NTP server. Copy the output.

[text-in-base-64]

2. Create a MachineConfig object, replacing the base64 string with the [text-in-base-64] string
generated in the output of the previous step. The following example adds the file to the control
plane (master) nodes. You can modify the file for worker nodes or make an additional machine
config for the worker role.

$ cat << EOF > ./99_masters-chrony-configuration.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 creationTimestamp: null
 labels:
 machineconfiguration.openshift.io/role: master
 name: 99-master-etc-chrony-conf
spec:
 config:
 ignition:
 config: {}
 security:
 tls: {}
 timeouts: {}
 version: 3.1.0
 networkd: {}
 passwd: {}
 storage:
 files:

24

 - contents:
 source: data:text/plain;charset=utf-8;base64,[text-in-base-64]①
 group:
 name: root
 mode: 420
 overwrite: true
 path: /etc/chrony.conf
 user:
 name: root
 osImageURL: ""

① Replace [text-in-base-64] with the base64 string.

3. Make a backup copy of the configuration file. For example:

$ cp 99_masters-chrony-configuration.yaml 99_masters-chrony-
configuration.yaml.backup

4. Apply the configuration file:

$ oc apply -f ./masters-chrony-configuration.yaml

5. Ensure the System clock synchronized value is yes:

$ sudo timedatectl

 Local time: Tue 2020-03-10 19:10:02 UTC
 Universal time: Tue 2020-03-10 19:10:02 UTC
 RTC time: Tue 2020-03-10 19:36:53
 Time zone: UTC (UTC, +0000)
System clock synchronized: yes
 NTP service: active
 RTC in local TZ: no

To setup clock synchronization prior to deployment, generate the manifest files and add this file
to the openshift directory. For example:

$ cp chrony-masters.yaml ~/clusterconfigs/openshift/99_masters-chrony-
configuration.yaml

Then, continue to create the cluster.

25

Chapter 10. Reviewing the installation
After installation, ensure the installer deployed the nodes and pods successfully.

Procedure

1. When the OpenShift Container Platform cluster nodes are installed appropriately, the following
Ready state is seen within the STATUS column:

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0.example.com Ready master,worker 4h v1.16.2
master-1.example.com Ready master,worker 4h v1.16.2
master-2.example.com Ready master,worker 4h v1.16.2

2. Confirm the installer deployed all pods successfully. The following command removes any pods
that are still running or have completed as part of the output.

$ oc get pods --all-namespaces | grep -iv running | grep -iv complete

26

	Troubleshooting
	Chapter 1. Troubleshooting the installer workflow
	Chapter 2. Troubleshooting install-config.yaml
	Chapter 3. Bootstrap VM issues
	3.1. Bootstrap VM cannot boot up the cluster nodes
	3.2. Inspecting logs

	Chapter 4. Ironic Bootstrap issues
	Chapter 5. Cluster nodes will not PXE boot
	Chapter 6. The API is not accessible
	Chapter 7. Cleaning up previous installations
	Chapter 8. Issues with creating the registry
	Chapter 9. Miscellaneous issues
	9.1. Addressing the runtime network not ready error
	9.2. Cluster nodes not getting the correct IPv6 address over DHCP
	9.3. Cluster nodes not getting the correct hostname over DHCP
	9.4. Routes do not reach endpoints
	9.5. Failed Ignition during Firstboot
	9.6. NTP out of sync

	Chapter 10. Reviewing the installation

