Deployment of IPI on BM using the
Ansible Playbook

Deployment Integration Team

1. Introduction
2. Prerequisites
3. Tour of the Ansible Playbook
4. Running the Ansible Playbook
4.1. git clone the Ansible playbook
4.2. Install the required Ansible collections
4.3. The ansible.cfg file
4.4. Ansible version
4.5. Copy local SSH key to provision node
4.6. Modifying the inventory/hosts
4.6.1. Enabling dual-stack based deployments (optional).
4.7. The Ansible playbook.yml
4.8. Customizing the Node Filesystems
4.9. Adding Extra Configurations to the OpenShift Installer
4.10. Pre-caching RHCOS Images
4.11. Disconnected Registry
4.11.1. Creating a new disconnected registry
4.11.2. Using an Existing Registry
4.12. Running the playbook.yml
5. Verifying Installation
6. Troubleshooting
6.1. Unreachable Host
6.2. Permission Denied Trying To Connect To Host
6.3. Dig lookup requires the python ‘dnspython’ library and it is not installed
6.4. Missing python netaddr library
6.5. Shared connection closed on provision host when installing packages
7. Gotchas
7.1. Using become: yes within ansible.cfg or inside playbook.yml
7.2. Failed to install python3-crypto & python3-pyghmi
7.3. Failed to connect to bus: No such file or directory
Appendix A: Using Ansible Tags with the playbook.yml
A.1. How to use the Ansible tags
A.2. Skipping particular tasks using Ansible tags
Appendix B: Using a proxy with your Ansible playbook

N NN o o0 O O U W

W W W NN DNNDNIDNIDNI DN NIDNIDNR B B R B R o) | s |,
m O © 0 O O O O W N P O © O 00 J U1 U1 U1 B b W wWw w

@ Download the PDF version of this document or visit https://openshift-kni.github.io/
- baremetal-deploy/

Ansible%20Playbook%20Install.pdf
https://openshift-kni.github.io/baremetal-deploy/
https://openshift-kni.github.io/baremetal-deploy/

Chapter 1. Introduction

This write-up will guide you through the process of using the Ansible playbooks to deploy a
Baremetal Installer Provisioned Infrastructure (IPI) of Red Hat OpenShift 4.

For the manual details, visit our Deployment Guide

https://openshift-kni.github.io/baremetal-deploy/

Chapter 2. Prerequisites

Best Practice Minimum Setup: 6 Physical servers (1 provision node, 3 master and 2 worker
nodes)

Best Practice Minimum Setup for disconnected environments: 7 Physical servers (1 provision
node, 1 registry node, 3 master and 2 worker nodes)

Minimum Setup: 4 Physical servers (1 provision node, 3 master nodes)

Minimum Setup for disconnected environments: 5 Physical servers (1 provision node, 1 registry
node', 3 master nodes)

Each server needs 2 NICs pre-configured. NIC1 for the private network and NIC2 for the
baremetal network. NIC interface names must be identical across all nodes”

It is recommended each server have a RAID-1 configured and initialized (though not enforced)
Each server must have IPMI configured

Each server must have DHCP setup for the baremetal NICs

Each server must have DNS setup for the API, wildcard applications

A DNS VIP is IP on the baremetal network is required for reservation. Reservation is done via
our DHCP server (though not required).

Optional - Include DNS entries for the hostnames for each of the servers

Download a copy of your Pull Secret

Due to the complexities of properly configuring an environment, it is recommended to review the
following steps prior to running the Ansible playbook as without proper setup, the Ansible
playbook won’t work.

The section to review and ensure proper configuration are as follows:

Validation checklist for nodes
One of the Create DNS records sections
o Create DNS records on a DNS server (Option 1)
o Create DNS records using dnsmasq (Option 2)
One of the Create DHCP reservation sections
o Create DHCP reservations (Option 1)
o Create DHCP reservations using dnsmasq (Option 2)
An existing Registry node (details on creating a registry if required below)
o Create a disconnected registry

An existing webserver to cache required files and the RHCOS images (details on creating a
webserver if required below)

o Webserver

Once the above is complete, install Red Hat Enterprise Linux (RHEL) 8.X on your provision node

https://cloud.redhat.com/openshift/install/metal/user-provisioned
Deployment#validation-checklist-for-nodesipi-install-prerequisites
Deployment#creating-dns-records-on-a-dns-server-option1_ipi-install-prerequisites
Deployment#creating-dns-records-using-dnsmasq-option2_ipi-install-prerequisites
Deployment#creating-dhcp-reservations-option1_ipi-install-prerequisites
Deployment#creating-dhcp-reservations-using-dnsmasq-option2_ipi-install-prerequisites
Deployment#ipi-install-creating-a-disconnected-registry_ipi-install-prerequisites
Deployment#ipi-install-creating-an%20rhcos-images-cache_ipi-install-prerequisites

and create a user (i.e. kni) to deploy as non-root and provide that user sudo privileges.
For simplicity, the steps to create the user named kni is as follows:

1. Login into the provision node via ssh

2. Create a user (i.e kni) to deploy as non-root and provide that user sudo privileges

useradd kni

passwd kni

echo "kni ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/kni
chmod 0440 /etc/sudoers.d/kni

3. Enable a dnf local repository on the provision host

4. Manually install python3-crypto and python3-pyghmi packages on the provision host

[1] If creating the mirrored registry, this system will require online access. The registry node may be a virtual machine in order to
reduce physical server footprint.

[2] https://github.com/openshift/installer/issues/2762

https://github.com/openshift/installer/issues/2762

Chapter 3. Tour of the Ansible Playbook

* inventory - contains the file hosts.sample that:

o contains all the modifiable variables, their default values, and their definition. Some
variables are empty ensuring users give an explicit value.

o the setting up of your provision node, master nodes, and worker nodes. Each section will
require additional details (i.e. Management credentials).

* requirements - contains the list of collections required by the playbook.

o The collections include two roles: redhatci.ocp.node_prep and redhatci.ocp.installer.
redhatci.ocp.node_prep handles all the prerequisites that the provisioner node requires
prior to running the installer. The redhatci.ocp.installer role handles extracting the
installer, setting up the manifests, and running the Red Hat OpenShift installation.

The tree structure is shown below:

—— ansible.cfg
—— inventory

| L—— hosts.sample

—— playbook.yml
L—— requirements.yml

Chapter 4. Running the Ansible Playbook

The following are the steps to successfully run the Ansible playbook.

4.1. git clone the Ansible playbook

The first step to using the Ansible playbook is to clone the baremetal-deploy repository.
e This should be done on a system that can access the provision host

1. Clone the git repository
[user@laptop ~]$ git clone https://github.com/openshift-kni/baremetal-deploy.git
2. Change to the ansible-ipi-install directory

[user@laptop ~]$ cd /path/to/git/repo/baremetal-deploy/ansible-ipi-install

4.2. Install the required Ansible collections

The Ansible playbook makes use of different collections defined in the requirements.yml file. Two of
the main roles come from the redhatci.ocp collection.

1. Install required collections

[user@laptop ~]$ ansible-galaxy collection install -r requirements.yml

4.3. The ansible.cfq file

While the ansible.cfg may vary upon your environment a sample is provided in the repository.

[defaults]

inventory=./inventory
remote_user=kni

callback_whitelist = profile_tasks

[privilege_escalation]
become_method=sudo

o Ensure to change the remote_user as deemed appropriate for your environment.
The remote_user is the user previously created on the provision node.

https://github.com/openshift-kni/baremetal-deploy/
https://github.com/redhatci/ansible-collection-redhatci-ocp

4.4. Ansible version

Ensure that your environment is using Ansible 2.9 or greater. The following command can be used
to verify.

ansible --version
ansible 2.9.1

config file = /path/to/baremetal-deploy/ansible-ipi-install/ansible.cfg

configured module search path = ['/path/to/.ansible/plugins/modules’,
"/usr/share/ansible/plugins/modules’]

ansible python module location = /usr/lib/python3.7/site-packages/ansible

executable location = /usr/bin/ansible

python version = 3.7.2 (default, Jan 16 2019, 19:49:22) [GCC 8.2.1 20181215 (Red Hat
8.2.1-6)]

0 The config file section should point to the path of your ansible.cfg

4.5. Copy local SSH key to provision node

With the ansible.cfg file in place, the next step is to ensure to copy your public ssh key to your
provision node using ssh-copy-id.

From the system that is to run the playbook,

$ ssh-copy-id <user>@provisioner.example.com

o <user> should be the user previously created on the provision node (i.e. kni)

4.6. Modifying the inventory/hosts

The hosts file provides all the definable variables and provides a description of each variable. Some
of the variables are explicitly left empty and require user input for the playbook to run.

The hosts file ensures all your nodes that will be used to deploy IPI on baremetal are setup. There
are 4 groups: masters, workers, provisioner, and registry_host (optional). The masters and workers
group collects information about the host such as its name, role, user management (i.e. iDRAC) user,
user management (i.e. iDRAC) password, ipmi_address, ipmi_port to access the server and the
provision mac address (NIC1) that resides on the provisioning network.

Below is a sample of the inventory/hosts file

[all:vars]

Hetta s S S A A A A 4 4
Required configuration variables for IPI on Baremetal Installations

HURHE RS HH R R S R R

The provisioning NIC (NIC1) used on all baremetal nodes
prov_nic=enol

The public NIC (NIC2) used on all baremetal nodes
pub_nic=eno?

(Optional) Set the provisioning bridge name. Default value is 'provisioning'.
#provisioning_bridge=provisioning

(Optional) Set the baremetal bridge name. Default value is 'baremetal'.
#ibaremetal_bridge=baremetal

(Optional) Activation-key for proper setup of subscription-manager, empty value
skips registration
#activation_key=""

(Optional) Activation-key org_id for proper setup of subscription-manager, empty
value skips registration
#org_id=""

The directory used to store the cluster configuration files (install-config.yaml,
pull-secret.txt, metal3-config.yaml)
dir="{{ ansible_user_dir }}/clusterconfigs"

The version of the openshift-installer, undefined or empty results in the playbook
failing with error message.

Values accepted: 'latest-4.3', 'latest-4.4', explicit version i.e. 4.3.0-0.nightly-
2019-12-09-035405

version=""

Enter whether the build should use 'dev' (nightly builds) or 'ga' for Generally
Available version of OpenShift

Empty value results in playbook failing with error message.

build=""

(Optional) Provisioning IP Network and dhcp range (default value)

If defined, make sure to update 'prov_ip' with a valid IP outside of your
"prov_dhcp_range' and update all other places like 'no_proxy_list'

prov_network=172.22.0.0/21

prov_dhcp_range="172.22.0.10,172.22.0.100"

Provisioning IP address (default value)
prov_ip=172.22.0.3

(Optional) Enable playbook to pre-download RHCOS images prior to cluster deployment
and use them as a local

cache. Default is false.

#icache_enabled=True

(Optional) Enable IPv6 addressing instead of IPv4 addressing
#ipvb_enabled=True

(Optional) When ipvb_enabled is set to True, but want IPv4 addressing on
provisioning network

Default is false.

#ipv4_provisioning=True

(Optional) When ipvb_enabled is set to True, but want IPv4 addressing on baremetal
network
#ipv4_baremetal=True

(Optional) A list of clock servers to be used in chrony by the masters and workers
#iclock_servers=["pool.ntp.org","clock.redhat.com"]

(Optional) Provide HTTP proxy settings
#http_proxy=http://USERNAME: PASSWORD@proxy.example.com: 8080

(Optional) Provide HTTPS proxy settings
#https_proxy=https://USERNAME :PASSWORD@proxy.example.com:8080

(Optional) comma-separated list of hosts, IP Addresses, or IP ranges in CIDR format
excluded from proxying

NOTE: OpenShift does not accept '*' as a wildcard attached to a domain suffix

i.e. *.example.com

Use ".' as the wildcard for a domain suffix as shown in the example below.

i.e. .example.com

#no_proxy_list="172.22.0.0/24, .example.com"

The default installer timeouts for the bootstrap and install processes may be too
short for some baremetal
deployments. The variables below can be used to extend those timeouts.

(Optional) Increase bootstrap process timeout by N iterations.
#increase_bootstrap_timeout=2

(Optional) Increase install process timeout by N iterations.
#increase_install_timeout=2

(Optional) Disable RedFish inspection to intelligently choose between IPMI or
RedFish protocol.

By default this feature is enabled and set to true. Uncomment below to disable and
use IPMI.

#redfish_inspection=false

(Optional) Modify files on the node filesystems, you can augment the "fake" roots
for the

control plane and worker nodes.

If defined, playbook will look for files in control plane and worker subdirectories.
Otherwise, it will look in {{ role_path }}/files/customize_filesystem (default)

For more information on modifying node filesystems visit: https://bit.1ly/36tD30f

10

#customize_node_filesystems="/path/to/customized/filesystems"

(Optional) Modify the path to add external manifests to the deployed nodes.

There are two folders manifests/ and openshift/

If defined, the playbook will copy manifests from the user provided directory.
Otherwise, files will be copied from the default location
'‘roles/installer/files/manifests/*"
#customize_extramanifests_path="/path/to/extra/manifests"
ficustomize_extramanifestsopenshift_path="/path/to/extra/ogpenshift"

BUBHBHHHHBHHHHHHBBHBH BB BB R B R BB BB BB R B Y
Vars regarding install-config.yaml
LEEEEEEE RS

Base domain, i.e. example.com

domain=""

Name of the cluster, i.e. openshift

cluster=""

The public CIDR address, i.e. 10.1.1.0/21

extcidrnet=""

An IP reserved on the baremetal network.

dnsvip=""

An IP reserved on the baremetal network for the API endpoint.

(Optional) If not set, a DNS lookup verifies that api.<clustername>.<domain>
provides an IP

#apivip=""

An IP reserved on the baremetal network for the Ingress endpoint.

(Optional) If not set, a DNS lookup verifies that *.apps.<clustername>.<domain>
provides an IP

#ingressvip=""

The master hosts provisioning nic

(Optional) If not set, the prov_nic will be used

#masters_prov_nic=""

Network Type (OpenShiftSDN or OVNKubernetes). Playbook defaults to OVNKubernetes.
Uncomment below for OpenShiftSDN

#inetwork_type="0penShiftSDN"

(Optional) A URL to override the default operating system image for the bootstrap
node.

The URL must contain a sha256 hash of the image.

See
https://qgithub.com/openshift/installer/blob/master/docs/user/metal/customization_ipi.m
d

Example https://mirror.example.com/images/qemu.qcow2.gz?sha256=a07bd. ..
#bootstraposimage=""

(Optional) A URL to override the default operating system image for the cluster
nodes.

The URL must contain a sha256 hash of the image.

See
https://qithub.com/openshift/installer/blob/master/docs/user/metal/customization_ipi.m
d

Example https://mirror.example.com/images/metal.qcow2.gz?sha256=3b5a8. ..

#clusterosimage=
A copy of your pullsecret from
https://cloud.redhat.com/openshift/install/metal/user-provisioned
pullsecret=""

(Optional) Disable BMC Certification Validation. When using self-signed certificates
for your BMC, ensure to set to True.

#f Default value is False.

#disable_bmc _certificate verification=True

(Optional) Enable RedFish VirtualMedia/iDRAC VirtualMedia
#ienable_virtualmedia=True

(Required when enable_virtualmedia is set to True) Set an available IP address from
the baremetal net for these two variables

#provisioningHostIP=<baremetal_net_IP1>

#bootstrapProvisioningIP=<baremetal_net_IP2>

(Optional) A MAC address to use for the external NIC on the bootstrap VM. This is
optional and if blank is generated by libvirt.
flexternalMACAddress="52:54:00:XX:XX:XX"

Master nodes

The hardware_profile is used by the baremetal operator to match the hardware
discovered on the host

See https://github.com/metal3-io/baremetal-
operator/blob/master/docs/api.md#baremetalhost-status

ipmi_port is optional for each host. 623 is the common default used if omitted

poweroff is optional. True or ommited (by default) indicates the playbook will power
off the node before deploying OCP

otherwise set it to false

(Optional) OpenShift 4.6+, Set Root Device Hints to choose the proper device to
install operating system on OpenShift nodes.

root device hint options include:

['deviceName', "hctl', 'model’, 'vendor','serialNumber', 'minSizeGigabytes', 'wwn', 'rotatio
nal']

Root Device Hint values are case sensitive.

root_device_hint="deviceName"

root device hint value="/dev/sda"

[masters]

master-0 name=master-@ role=master ipmi_user=admin ipmi_password=password
ipmi_address=192.168.1.1 ipmi_port=623 provision_mac=ec:f4:bb:da:0c:58
hardware_profile=default poweroff=true

master-1 name=master-1 role=master ipmi_user=admin ipmi_password=password
ipmi_address=192.168.1.2 ipmi_port=623 provision_mac=ec:f4:bb:da:32:88
hardware_profile=default poweroff=true

master-2 name=master-2 role=master ipmi_user=admin ipmi_password=password
ipmi_address=192.168.1.3 ipmi_port=623 provision_mac=ec:f4:bb:da:0d:98
hardware_profile=default poweroff=true

11

12

#

Worker nodes

[workers]

worker-@ name=worker-@ role=worker ipmi_user=admin ipmi_password=password
ipmi_address=192.168.1.4 ipmi_port=623 provision_mac=ec:f4:bb:da:0c:18
hardware_profile=unknown poweroff=true

worker-1 name=worker-1 role=worker ipmi_user=admin ipmi_password=password
ipmi_address=192.168.1.5 ipmi_port=623 provision_mac=ec:f4:bb:da:32:28
hardware_profile=unknown poweroff=true

#

Provision Host

[provisioner]
provisioner.example.com

#
#
#
#
#

= F = o H = O =

= =

#

Registry Host
Define a host here to create or use a local copy of the installation registry
Used for disconnected installation

[registry_host]

registry.example.com

[registry_host:vars]

The following cert_* variables are needed to create the certificates
when creating a disconnected registry. They are not needed to use
an existing disconnected registry.

cert_country=US #it must be two letters country

cert_state=MyState

cert_locality=MyCity

cert_organization=MyCompany

cert_organizational_unit=MyDepartment

The port exposed on the disconnected registry host can be changed from
the default 5000 to something else by changing the following variable.
registry_port=5000

The directory the mirrored reqgistry files are written to can be modified from teh

default /opt/registry by changing the following variable.

#

= FF O I

registry_dir="/opt/registry"
The following two variables must be set to use an existing disconnected registry.

Specify a file that contains extra auth tokens to include in the
pull-secret if they are not already there.
disconnected_registry_auths_file=/path/to/registry-auths.json

Specify a file that contains the addition trust bundle and image
content sources for the local registry. The contents of this file
will be appended to the install-config.yml file.

disconnected_registry_mirrors_file=/path/to/install-config-appends.json

6 The ipmi_address can take a fully qualified name assuming it is resolvable.

The ipmi_port examples above show how a user can specify a different ipmi_port
for each host within their inventory file. If the ipmi_port variable is omitted from
the inventory file, the default of 623 will be used.

A detailed description of the vars under the section Vars regarding install-
config.yaml may be reviewed within Configuration Files if unsure how to populate.

4.6.1. Enabling dual-stack based deployments (optional).

Users now can deploy dual-stack based deployments using ansible-playbook by including below
variables under inventory/hosts.sample file.

ipvb_enabled=True

dualstack _baremetal=True

extcidrnet="<ipv4-subnet-for-your-cluster>" #Ex: 10.0.0.1/24
extcidrnet6="<ipv6-subnet-for-your-cluster>" #Ex: fe80:12:0:4567::/64

0 Only applicable for OCP versions greater than 4.6.

4.7. The Ansible playbook.yml

The Ansible playbook connects to your provision host and runs through the redhatci.ocp.node_prep
role and the redhatci.ocp.installer role. No modification is necessary. All modifications of
variables may be done within the inventory/hosts file. A sample file is located in this repository
under inventory/hosts.sample. From the system that is to run the playbook,

Sample playbook.yml

- name: IPI on Baremetal Installation Playbook
hosts: provisioner
collections:
- redhatci.ocp
roles:
- node_prep
- installer

4.8. Customizing the Node Filesystems

If you need to modify files on the node filesystems, you can augment the "fake" roots for the
masters and workers under the roles/installer/files/customize_filesystem/{master,worker}
directories. Any files added here will be included in the ignition config files for each of the machine
types, leading to permanent changes to the node filesystem.

Do not place any files directly in the "fake" root—only in subdirectories. Files in
o the root will cause the ignition process to fail. (There is a task in the playbook to

13

Deployment#ipi-install-configuration-files

cleanup the .gitkeep file in the root, if it is left in place.)

This will utilize the Ignition filetranspiler tool, which you can read about for more information on
how to use the "fake" root directories.

An example of using this customization is to disable a network interface that you need to not
receive a DHCP assignment that is outside of the cluster configuration. To do this for the eno
interface on the master nodes, create the appropriate etc/sysconfig/network-scripts/ifcfg-enol file
in the "fake" root:

IFCFG_DIR="roles/installer/files/customize_filesystem/master/etc/sysconfig/network-
scripts”

IFNAME="eno1"

mkdir -p $IFCFG_DIR

cat << EOF > $IFCFG_DIR/ifcfg-${IFNAME}

DEVICE=${IFNAME}

BOOTPROTO=none

ONBOOT=no
EOF
o By default these directories are empty, and the worker subdirectory is a symbolic
link to the master subdirectory so that changes are universal.

4.9. Adding Extra Configurations to the OpenShift
Installer

Prior to the installation of Red Hat OpenShift, you may want to include additional configuration
files to be included during the installation. The installer role handles this.

In order to include the extraconfigs, ensure to place your vyaml files within the
roles/installer/files/manifests directory. All the files provided here will be included when the
OpenShift manifests are created.

0 By default this directory is empty.

4.10. Pre-caching RHCOS Images

If you wish to set up a local cache of RHCOS images on your provisioning host, set the cache_enabled
variable to True in your hosts file. When requested, the playbook will pre-download RHCOS images
prior to actual cluster deployment.

It places these images in an Apache web server container on the provisioning host and modifies
install-config.yaml to instruct the bootstrap VM to download the images from that web server
during deployment.

A If you set the clusterosimage and bootstraposimage variables, then cache_enabled

14

https://github.com/ashcrow/filetranspiler/blob/master/filetranspile
https://github.com/ashcrow/filetranspiler/blob/master/filetranspile

will automatically be set to False. Setting these variables leaves the responsibility
to the end user in ensuring the RHCOS images are readily available and accessible
to the provision host.

4.11. Disconnected Registry
A disconnected registry can be used to deploy the cluster. This registry can exist or can be created.

To use a disconnected registry, set the registries host name in the [registry_host] group in the
inventory file.

4.11.1. Creating a new disconnected registry

To <create a new disconnected registry, the disconnected_registry_auths_file and
disconnected_registry_mirrors_file variables must not be set.

The certificate information used to generate the host certificate must be defined. These variables
must be defined as variables to the registry_host group in the inventory file.

[registry_host:vars]

cert_country=US

cert_state=MyState
cert_locality=MyCity
cert_organization=MyCompany
cert_organizational_unit=MyDepartment

o cert_country must be only two letters, i.e. US

4.11.2. Using an Existing Registry

o If no existing registry is already existing for your fully disconnected environment,
visit Creating a New Disconnected Registry section.

When using an existing registry, two variables labeled disconnected_registry_auths_file and the
disconnected_registry_mirrors_file must be set. These variables are located within your
inventory/hosts file and the inventory/hosts.sample file can be used as reference.

The disconnected_registry_auths_file variable should point to a file containing json data regarding
your registry information. This will be appended to the auths section of the pull secret by the
Ansible playbook itself.

An example of the contents of the disconnected_registry_auths_file is shown below.

cat /path/to/registry-auths.json
{"registry.example.com:5000": {"auth": "ZHVtbXk6ZHsFVtbXk=", "email":
"user@example.com" } }

15

Deployment#ipi-install-creating-a-disconnected-registry_ipi-install-prerequisites

The auth password given base64 encoding of the http credentials used to create
the htpasswd file.

o Example:

[user@registry ~]$ b64auth=$(echo -n '<username>:<passwd>' | openssl base64)
[user@registry ~]$ echo $b64auth

The disconnected_registry_mirrors_file variable should point to a file containing the
additionalTrustBundle and imageContentSources (OpenShift 4.13 and below) or imageDigestSources
(OpenShift 4.14 and above) for the disconnected registry. The certificate that goes within the
additional trust bundle is the disconnected registry node’s certificate. The imageContentSources adds
the mirrored information of the registry. The below content from the install-config-appends.yml
file gets automatically appended by the Ansible playbook.

cat /path/to/install-config-appends.yml

additionalTrustBundle: |
————— BEGIN CERTIFICATE-----
MIIGPDCCBCSgAwIBAGIUWr1DxDg53hrsk6XVLRXUj fFIm+swDQYJKoZIhveNAQEL
BQAwgZAxCzAJBgNVBAYTATVTMRAwDgYDVQQIDAdNeVN@AYXR1MQ8wDQYDVQQHDAZN
eUNpdHkxE jAQBgNVBAoMCU15Q29tcGFue TEVMBMGATUECWWMTX1EZXBhenRtZW50

. [ABBREVIATED CERTIFICATE FOR BREVITY]

MTMwMQYDVQQDDCpyZWdpc3RyeS5rbmk3LmNsb3VkLmxhYi51bmeuYm9zLnI1ZGhh
dC5jb2@wHhcNMjAwWNDA3MjMTMZzI2WheNMzAWNDATMjMTMzI2Wj CBKDELMAKGATUE
----- END CERTIFICATE-----

<image-config>: @
- mirrors:
- registry.example.com:5000/0cp4/openshift4
source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
- mirrors:
- registry.example.com:5000/ocp4/openshift4
source: registry.svc.ci.openshift.org/ocp/release
- mirrors:
- registry.example.com:5000/0cp4/openshift4
source: quay.io/openshift-release-dev/ocp-release

Where:

+ <1> <image-config> 1is either imageContentSources for OpenShift 4.13 and below, or
imageDigestSources for Openshift 4.14 and above.

o Indentation is important in the yml file. Ensure your copy of the install-config-
appends.yml is properly indented as in the example above.

16

4.12. Running the playbook.yml

With the playbook.yml set and in-place, run the playbook.yml

$ export ANSIBLE_CONFIG=./ansible.cfg
$ ansible-playbook -i inventory/hosts playbook.yml

17

Chapter 5. Verifying Installation

Once the playbook has successfully completed, verify that your environment is up and running.

1. Log into the provision node

ssh kni@provisioner.example.com

e kni user is my privileged user.

2. Export the kubeconfig file located in the ~/clusterconfigs/auth directory
export KUBECONFIG=~/clusterconfigs/auth/kubeconfig
3. Verify the nodes in the OpenShift cluster

[kni@worker-0 ~]$ oc get nodes

NAME STATUS ROLES
master-0.openshift.example.com Ready master
master-1.openshift.example.com Ready master
master-2.openshift.example.com Ready master
worker-0.openshift.example.com Ready worker
worker-1.openshift.example.com Ready worker

18

AGE
19h
19h
19h
19h
19h

VERSION
v1.16.2
v1.16.2
v1.16.2
v1.16.2
v1.16.2

Chapter 6. Troubleshooting

The following section troubleshoots common errors that may arise when running the Ansible
playbook.

6.1. Unreachable Host

One of the most common errors is not being able to reach the provisioner host and seeing an error
similar to

$ ansible-playbook -i inventory/hosts playbook.yml

PLAY [IPI on Baremetal Installation Playbook] *¥*#*¥##kkdkadkdiiiikbbibddkddihhhdddkrrk

TASK [Gathering Facts] kkkkkkkhkkkhkkhkkkhkkkhkkhhkkhhkkkhkkkhkkhhkkkkkkkkkhkkkhkkkkkkkkkkk

fatal: [provisioner.example.com]: UNREACHABLE! => {"changed": false, "msg": "Failed to
connect to the host via ssh: ssh: Could not resolve hostname provisioner.example.com:
Name or service not known", "unreachable": true}

PLAY RECAP kkkkkkkkkkkkhkhkhhhhkkkkkkkhkhkhkhhkkkkkkkkhkhhhkkkkhkkhkkhkhkhhhkkkkhkkkkkkkkkkkkkk

provisioner.example.com : ok=0 changed=0 unreachable=1 failed=0
skipped=0 rescued=0 ignored=0

In order to solve this issue, ensure your provisioner hostname is pingable.

1. The system you are currently on can ping the provisioner.example.com
ping provisioner.example.com

2. Once pingable, ensure that you have copied your public SSH key from your local system to the
privileged user via the ssh-copy-id command.

ssh-copy-1id kni@provisioner.example.com

o When prompted, enter the password of your privileged user (i.e. kni).

3. Verify connectivity using the ping module in Ansible

ansible -1 inventory/hosts provisioner -m ping
provisioner.example.com | SUCCESS => {
"ansible facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python”

+
"changed": false,
|lp_ing": llpongll

19

4. Re-run the Ansible playbook

$ ansible-playbook -i inventory/hosts playbook.yml

6.2. Permission Denied Trying To Connect To Host

Another very common error is getting a permission denied error similar to:

$ ansible-playbook -i inventory/hosts playbook.yml

PLAY [IPI on Baremetal Installation Playbook]

kkkkkkkkkkkkkkkhkkhkhkhhkkhhkkhhkhhkkhhkkhkkkhhkkhkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkkkkkkkhkkkkkkk

kkkkkkkkkkkkkkk

TASK [Gathering Facts]

kkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkhkkkkkkhhkkkhkkkkkkhhkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkk

kkkkkkkkkhkkkkkhkkkhhkkhhkkhkkkkkhkkkkkkk

fatal: [provisioner.example.com]: UNREACHABLE! => {"changed": false, "msg": "Failed to
connect to the host via ssh: rlopez@provisioner.example.com: Permission denied
(publickey,gssapi-keyex,gssapi-with-mic,password).", "unreachable": true}

PLAY RECAP

kkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkhkkkkkhhhkkkkkkkkkhhkkkkkkkkkhkhkkkkkkkkhkhkkkkkkkkkkkkkkk

kkkkkkkhkkkkkhkkhkhkkhhkkhhkkhhkkhkhkkhhkkhhkkhkkhkkhkkkkkkk

provisioner.example.com : ok=0 changed=0 unreachable=1 failed=0 skipped=0
rescued=0 ignored=0

The above issue is typically related to a problem with your ansible.cfg file. Either it does not exist,
has errors inside it, or you have not copied your SSH public key onto the provisioner.example.com
system. If you notice closely, the Ansible playbook attempted to use my rlopez user instead of my
kni user since my local ansible.cfg did not exist AND I had not yet set the remote_user parameter to
kni (my privileged user).

1. When working with the Ansible playbook ensure you have an ansible.cfg located in the same
directory as your playbook.yml file. The contents of the ansible.cfg should look similar to the
below with the exception of changing your inventory path (location of inventory directory) and
potentially your privileged user if not using kni.

$ cat ansible.cfg

[defaults]
inventory=/path/to/baremetal-deploy/ansible-ipi-install/inventory
remote_user=kni

[privilege_escalation]

20

become=true
become_method=sudo

2. Next, ensure that you have copied your public SSH key from your local system to the privileged
user via the ssh-copy-id command.

ssh-copy-id kni@provisioner.example.com

o When prompted, enter the password of your privileged user (i.e. kn1).

3. Verify connectivity using the ping module in Ansible

ansible -i inventory/hosts provisioner -m ping
provisioner.example.com | SUCCESS => {
"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"

o
"changed": false,
|lp_ing": ||p0ngll

4. Re-run the Ansible playbook

$ ansible-playbook -i inventory/hosts playbook.yml

6.3. Dig lookup requires the python ‘dnspython’
library and it is not installed

One of the tasks in the node_prep role captures your API VIP and the Ingress VIP of your
environment using a lookup via dig. It does this DNS query using the dnspython library. This error is
a little deceiving because the dnspython package does not need to be installed on the remote
server (i.e. provisioner.example.com) but the package must be installed on your local host that is
running the Ansible playbook.

TASK [node_prep : fail]

kkkkkkkkkkkkkkkhkkhkhkhhkkhhkkhkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhkkhhkkhhkkkkkhkkhkkkkkkx

kkkkkkkkkkkkkkkkkkkkkk

skipping: [provisioner.example.com]

TASK [node_prep : Verify DNS records for API VIP, Wildcard (Ingress) VIP]

kkkkkkkhkkkkkkkkkhkkhkhkkhkhkkkkkhkkkhkhkkkkkkhkhkkkhkhkkkkkkkkkkkkkkk

fatal: [provisioner.example.com]: FAILED! => {"msg": "An unhandled exception occurred
while running the lookup plugin 'dig'. Error was a <class
'ansible.errors.AnsibleError'>, original message: The dig lookup requires the python

21

https://docs.ansible.com/ansible/latest/plugins/lookup/dig.html
https://docs.ansible.com/ansible/latest/plugins/lookup/dig.html
https://docs.ansible.com/ansible/latest/plugins/lookup/dig.html

"dnspython’ library and it is not installed"}

PLAY RECAP

kkkkkkkkkkkkhkkhhhhkkkhkkhkhkkhhhkkkhkhkhkhkhkhkhhhhkkkkhkkkhkhhhkkkkhkhkkhkhkhhhkkkkkhkkkhkhhhkkkkkkkkkkkkk

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

provisioner.example.com : ok=2 changed=0 unreachable=0 failed=1 skipped=3
rescued=0 ignored=0

The above issue can be fixed by simply installing python3-dns on your local system (assuming your
using an OS such as Fedora, Red Hat)

On a local host running Red Hat 8.x, run:
sudo dnf install python3-dns

On a local host running Red Hat 7.%, run:
sudo yum install python2-dns

On a local host running Fedora, run:
sudo dnf install python3-dns

Re-run the Ansible playbook

$ ansible-playbook -i inventory/hosts playbook.yml

6.4. Missing python netaddr library

The Ansible playbook takes advantage of certain filters such as the ipaddr filter. In order to use this
filter, your localhost running the Ansible playbook requires the python netaddr library.

The error when running the playbook looks like the following:

TASK [node_prep : Fail if Python modules are missing]

kkkkkkkkkkkkkkkhkkkhkhkkkhkkkkkkkkhkhkkhhkkhkkkkhkkhkhkkkhkkkhkkhhkkhkhkkhkhkkkkkhkkkhkkkkkkkkkkk

Tuesday 05 May 2020 19:30:19 +0000 (0:00:00.512) 0:00:13.829 ****kkkkkik
fatal: [localhost]: FAILED! => {"changed": false, "msg": "Missing python module(s)
["'netaddr'] on localhost\n"}

The above issue can be fixed by simply installing python3-netaddr on your local system (assuming
your using an OS such as Fedora, Red Hat)

On a local host running Red Hat 8.%, run:

22

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters_ipaddr.html

sudo dnf install python3-netaddr
On a local host running Red Hat 7.%, run:

sudo yum install python2-netaddr
On a local host running Fedora, run:

sudo dnf install python3-netaddr
Re-run the Ansible playbook

$ ansible-playbook -i inventory/hosts playbook.yml

6.5. Shared connection closed on provision host when
installing packages

When deploying in an environment where subscription manager is not being used and a local
repository is being setup on the provision host due to the nature that the provision host is offline,
you may see the following error.

TASK [node_prep : Install required packages]

kkkkkkkkkkhkkkkkkhkkhkhkkhkkkhkkhkkhhkkhhkkkkkhkkhhkkhhkkhkkhkkhhkkhhkkhkkhkkhkkhkkkkkkhkkhkkkkkkk

*kkkkkkkkk

Thursday 07 May 2020 17:04:21 +0000 (0:00:00.152) 0:00:11.854 ***drkrkk

fatal: [provisioner.example.com]: FAILED! => {"changed": false, "module_stderr":
"Shared connection to provisioner.example.com closed.\r\n", "module_stdout": "[Errno
101] Network is unreachable\r\n\r\n{\"msg\": \"Nothing to do\", \"changed\": false,
\"results\": [], \"rc\": @, \"invocation\": {\"module_args\": {\"name\": [\"
firewalld\", \"tar\", \"Llibvirt\", \"gemu-kvm\", \"python3-devel\", \"jq\", \"
ipmitool\", \"python3-libvirt\", \"python3-1xm1\", \"python3-yaml\", \"NetworkManager-
Libnm\", \"nm-connection-editor\", \"libsemanage-python3\", \"policycoreutils-
python3\", \"podman\"], \"state\": \"present\", \"update_cache\": true,
\"allow_downgrade\": false, \"autoremove\": false, \"bugfix\": false,
\"disable_gpg_check\": false, \"disable_plugin\": [], \"disablerepo\": [],
\"download_only\": false, \"enable_plugin\": [], \"enablerepo\": [], \"exclude\": [],
\"installroot\": \"/\", \"install_repoquery\": true, \"install_weak_deps\": true,
\"security\": false, \"skip_broken\": false, \"update_only\": false, \"
validate_certs\": true, \"lock_timeout\": 30, \"conf_file\": null, \"
disable_excludes\": null, \"download dir\": null, \"1list\": null, \"releasever\":
null}}I\r\n", "msg": "MODULE FAILURE\nSee stdout/stderr for the exact error", "rc": 0}

The error basically means that dnf was not able to load particular plugins, specifically the product-

23

id and the subscription-manager plugins. However,since this is a local repository with offline access,
we will want to disable these plugins when this error occurs.

On the provision host, if you run the following command:

[kni@provisioner ~]$ sudo dnf info dnf

Updating Subscription Management repositories.

Unable to read consumer identity

[Errno 101] Network is unreachable

Last metadata expiration check: 0:08:49 ago on Thu 07 May 2020 ©8:11:19 PM UTC.
Installed Packages

Name :
Version
Release
Architecture :
Size

Source
Repository
From repo
Summary

URL

License
Description

dnf

4,27
: 7.e18.1

noarch

s 1.7 M

: dnf-4.2.7-7.e18_1.src.rpm

: @System

: rhel-8-for-x86_64-baseos-rpms

: Package manager

: https://qgithub.com/rpm-software-management/dnf

: GPLv2+ and GPLv2 and GPL

: Utility that allows users to manage packages on their systems.

: It supports RPMs, modules and comps groups & environments.

To ensure the issue is plugin related, we can attempt to run the same command with plugins

disabled as such:

[kni@provisioner ~]$ sudo dnf info dnf --disableplugin=product-id,subscription-manager
Last metadata expiration check: 0:11:17 ago on Thu 07 May 2020 ©8:11:19 PM UTC.
Installed Packages

Name :
Version
Release
Architecture :
Size

Source
Repository
From repo
Summary

URL

License
Description

dnf

4.2.7
: 7.el18.1

noarch

17T M

: dnf-4.2.7-7.e18_1.src.rpm

: @System

: rhel-8-for-x86_64-baseos-rpms

: Package manager

: https://qgithub.com/rpm-software-management/dnf

: GPLv2+ and GPLv2 and GPL

: Utility that allows users to manage packages on their systems.

: It supports RPMs, modules and comps groups & environments.

If you notice, the portion that says

Unable to read consumer identity

24

[Errno 101] Network is unreachable

is no longer stated.

For this fix to be permanent, modify the /etc/yum.conf file and include the plugins=0 into the [main]
section of the configuration file.

[kni@provisioner ~]$ cat /etc/yum.conf

[main]

gpgcheck=1

installonly_limit=3
clean_requirements_on_remove=True
best=True

plugins=0

25

Chapter 7. Gotchas

7.1. Using become: yes within ansible.cfg or inside
playbook.yml

This Ansible playbook takes advantage of the ansible_user_dir variable. As such, it is important to
note that if within your ansible.cfg or within the playbook.yml file the privilege escalation of
become: yes is used, this will modify the home directory to that of the root user (i.e. /root) instead of
using the home directory of your privileged user, kni with a home directory of /home/kni

7.2. Failed to install python3-crypto & python3-pyghmi

The Ansible playbook uses the ipmi_power module to power off the OpenShift cluster nodes prior to
deployment. This particular module has a dependency for two packages: python3-crypto and
python3-pyghmi. When using Red Hat Enterprise Linux 8, these packages do not reside in BaseOS nor
AppStream repositories. If using subscription-manager, they reside in the OpenStack repositories
such as openstack-16-for-rhel-8-x86_64-rpms, however, to simplify the installation of these
packages, the playbook uses the available versions from trunk.rdoproject.org.

The playbook assumes that the provision host can access trunk.rdoproject.org or that the rpm
packages are manually installed on provision host.

When the provision host cannot reach trunk.rdopoject.org and the packages are not already
installed on the system, the following error can be expected

TASK [node_prep : Install required packages]

KRRk e R e R R o R R e R o R o R S R R R o R S e R S R S R e R S R S R S R e R ek R S R S R e R e R S R R e R e R R e

*kkkkkkkkk

Thursday 07 May 2020 19:11:35 +0000 (0:00:00.161) 0:00:11.940 *****Fxksx
fatal: [provisioner.example.com]: FAILED! => {"changed": false, "failures": ["No

package python3-crypto available.", "No package python3-pyghmi available."], "msg":
"Failed to install some of the specified packages", "rc": 1, "results": []}

The python3-crypto and python3-pyghmi can be downloaded from the following
links if required for an offline provision host:

* python3-crypto
* python3-pyghmi

7.3. Failed to connect to bus: No such file or directory

The Ansible playbook creates two containers (when enabled) to store a mirored registry and a
caching webserver. When these containers are created, the playbook also creates a systemd unit file
to ensure these containers are restarted upon the reboot of the host serving them.

26

https://docs.ansible.com/ansible/latest/modules/ipmi_power_module.html
https://trunk.rdoproject.org/rhel8-master/deps/latest/Packages/python3-crypto-2.6.1-18.el8ost.x86_64.rpm
https://trunk.rdoproject.org/rhel8-master/deps/latest/Packages/python3-pyghmi-1.0.22-2.el8ost.noarch.rpm

Since these are systemd user services, when logging into a system to attempt a command such as
systemctl --user status container-cache.service for the webserver or systemctl --user status
container-registry.service for the mirrored registry, you may get an error such as:

[kni@provisioner ~]$ systemctl --user status container-cache
Failed to connect to bus: No such file or directory

What the following error is trying to address is that the parameter, DBUS_SESSIONBUS_ADDRESS, is not
set.

In order to set this variable, we can export as follows:

export DBUS_SESSIONBUS_ADDRESS="unix:path/run/user/$id/bus"

Once that has been set, if you re-attempt the systemctl command, you should see output as follows:

[kni@provisioner ~]$ systemctl --user status container-cache.service
0 container-cache.service - Podman container-cache.service
Loaded: loaded (/home/kni/.config/systemd/user/container-cache.service; enabled;
vendor preset: enabled)
Active: active (running) since Mon 2020-06-01 19:52:04 UTC; 49min ago
Process: 36380 ExecStart=/usr/bin/podman start rhcos_image_cache (code=exited,
status=0/SUCCESS)
Main PID: 36410 (conmon)

27

Appendix A: Using Ansible Tags with the
playbook.yml

As this playbook continues to grow, there may be times when it is useful to run specific portions of
the playbook rather than running everything the Ansible playbook offers.

For example, a user may only want to run the networking piece of the playbook or create just the
pull-secret.txt file, or just clean up the environment — just to name a few.

As such the existing playbook has many tags that can be used for such purposes. By running the
following command you can see what options are available.

$ ansible-playbook -i inventory/hosts playbook.yml --list-tasks --list-tags
playbook: playbook.yml

play #1 (provisioner): IPI on Baremetal Installation Playbook TAGS: []
tasks:

include_tasks TAGS: [validation]

include_tasks TAGS: [subscription]

include_tasks TAGS: [packages]

include_tasks TAGS: [network]

include_tasks TAGS: [network facts]

include_tasks TAGS: [user]

include_tasks TAGS: [services]

include_tasks TAGS: [firewall]

include_tasks TAGS: [storagepool]

include_tasks TAGS: [clusterconfigs]

include_tasks TAGS: [powerservers]

include_tasks TAGS: [cleanup, getoc]

include_tasks TAGS: [extract, pullsecret]

include_tasks TAGS: [rhcospath]

include_tasks TAGS: [cache]

include_tasks TAGS: [installconfig]

include_tasks TAGS: [metal3config]

include_tasks TAGS: [customfs]

include_tasks TAGS: [manifests]

include_tasks TAGS: [extramanifests]

include_tasks TAGS: [cleanup]

include_tasks TAGS: [install]

TASK TAGS: [cache, cleanup, clusterconfigs, customfs, extract, extramanifests,
firewall, getoc, install, installconfig, manifests, metal3config, network,
network_facts, packages, powerservers, pullsecret, rhcospath, services, storagepool,
subscription, user, validation]

To break this down further, the following is a description of each tag.

Table 1. Table Playbook Tag Description

28

tag

validation

subscription
packages

network

network_facts

user

services
firewall
storagepool

clusterconfigs

powerservers

getoc

extract

pullsecret

rhcospath
cache
installconfig
metal3config

customfs

manifests
extramanifests
install

cleanup

description

It is always required. It verifies that everything
in your environment is set and ready for
OpenShift deployment and sets some required
internal variables

subscribe via Red Hat subscription manager
install required package for OpenShift

setup the provisioning and baremetal network
bridges and bridge slaves

regather networking facts of environment

add remote user to libvirt group and generate
SSH keys

enable appropriate services for OpenShift
set firewall rules for OpenShift
define, create, auto start the default storage pool

directory that stores all configuration files for
OpenShift

power off all servers that will be part of the
OpensShift cluster

get the appropriate oc binary, extract it and
place within /usr/local/bin

extract the OpenShift installer

copy the pullsecret to the pull-secret.txt file
under the remote user home directory

set the RHCOS path

tasks related to enabling RHCOS image caching
generates the install-config. YAML

generates the metal3-config.YAML

deals with customizing the filesystem via
ignition files

create the manifests directory
include any extra manifests files
Deploy OpenShift

clean up the environment within the
provisioning node. Does not remove networking

29

A.1. How to use the Ansible tags

The following is an example on how to use the --tags option. In this example, we will just install the
packages to the provision node.

Example 1

ansible-playbook -i inventory/hosts playbook.yml --tags "validation,packages"

The example above calls for the setup of the networking and installation of the packages from the
Ansible playbook. Only the tasks with these specific tags will run.

o Due to the dependencies in the playbook, the validation tag is always required.

A.2. Skipping particular tasks using Ansible tags

In the event that you want to always skip certain tasks of the playbook this can be done via the
--skip-tag option.

We will use similar example as above where we want to skip the network setup and the package
installation.

Example 1

ansible-playbook -i inventory/hosts playbook.yml --skip-tags "network,packages”

30

Appendix B: Using a proxy with your Ansible
playbook

When running behind a proxy, it is important to properly set the environment to handle such
scenario such that you can run the Ansible playbook. In order to use a proxy for the ansible
playbook set the appropriate variables within your inventory/hosts file. These values will also be
included within your generated install-config.yaml file.

(Optional) Provide HTTP proxy settings
#thttp_proxy=http://USERNAME: PASSWORD@proxy.example.com: 8080

(Optional) Provide HTTPS proxy settings
#thttps_proxy=https://USERNAME : PASSWORD@proxy.example.com: 8080

(Optional) comma-separated list of hosts, IP Addresses, or IP ranges in CIDR format
excluded from proxying

NOTE: OpenShift does not accept '*' as a wildcard attached to a domain suffix

i.e. *.example.com

Use '.' as the wildcard for a domain suffix as shown in the example below.

i.e. .example.com

#no_proxy_list="172.22.0.0/24, .example.com"

31

	Deployment of IPI on BM using the Ansible Playbook
	Chapter 1. Introduction
	Chapter 2. Prerequisites
	Chapter 3. Tour of the Ansible Playbook
	Chapter 4. Running the Ansible Playbook
	4.1. git clone the Ansible playbook
	4.2. Install the required Ansible collections
	4.3. The ansible.cfg file
	4.4. Ansible version
	4.5. Copy local SSH key to provision node
	4.6. Modifying the inventory/hosts
	4.6.1. Enabling dual-stack based deployments (optional).

	4.7. The Ansible playbook.yml
	4.8. Customizing the Node Filesystems
	4.9. Adding Extra Configurations to the OpenShift Installer
	4.10. Pre-caching RHCOS Images
	4.11. Disconnected Registry
	4.11.1. Creating a new disconnected registry
	4.11.2. Using an Existing Registry

	4.12. Running the playbook.yml

	Chapter 5. Verifying Installation
	Chapter 6. Troubleshooting
	6.1. Unreachable Host
	6.2. Permission Denied Trying To Connect To Host
	6.3. Dig lookup requires the python ‘dnspython’ library and it is not installed
	6.4. Missing python netaddr library
	6.5. Shared connection closed on provision host when installing packages

	Chapter 7. Gotchas
	7.1. Using become: yes within ansible.cfg or inside playbook.yml
	7.2. Failed to install python3-crypto & python3-pyghmi
	7.3. Failed to connect to bus: No such file or directory

	Appendix A: Using Ansible Tags with the playbook.yml
	A.1. How to use the Ansible tags
	A.2. Skipping particular tasks using Ansible tags

	Appendix B: Using a proxy with your Ansible playbook

